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ABSTRACT
The Rust programming language has a safe memory model that
promises to eliminate critical memory bugs. While the language is
strong in doing so, its memory guarantees are lost when any unsafe
blocks are used. Unsafe code is often needed to call library functions
written in an unsafe language inside a Rust program. We present
Fidelius Charm (FC), a system that protects a programmer-specified
subset of data in memory from unauthorized access through vulner-
able unsafe libraries. FC does this by limiting access to the program’s
memory while executing unsafe libraries. FC uses standard features
of Rust and utilizes the Linux kernel as a trusted base for splitting
the address space into a trusted privileged region under the control
of functions written in Rust and a region available to unsafe exter-
nal libraries. This paper presents our design and implementation
of FC, presents two case studies for using FC in Rust TLS libraries,
and reports on experiments showing its performance overhead is
low for typical uses.
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1 INTRODUCTION
Rust is designed to provide strong memory safety, but provides
a way to escape its strict checking rules using an explicit unsafe
keyword. This enables systems-level Rust programming, and sup-
ports easy integration with libraries written in unsafe languages
such as C. Code within an unsafe region can use all memory in
the Rust program’s process in arbitrary ways, jeopardizing all the
safety guarantees made by the Rust compiler. Unsafe regions enable
calling unsafe and untrustworthy external libraries through Rust’s
foreign function interface (FFI). When using FFI, the Rust compiler
cannot reason about memory vulnerabilities, repudiating all the
safety guarantees Rust programmers work so hard to obtain.
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The goal of this work is to enable FFI calls while isolating some
of the already allocated memory, limiting the potentially-vulnerable
external code (running within the same address space) from read-
ing sensitive data. Rust has no mechanism to isolate an unsafe
external function or limit its impact. A practical isolation mecha-
nism must be able to limit the data available to an unsafe external
function while allowing it to execute normally without the need
to modify or even inspect the unsafe code (which may only be
available as a binary). Traditional ways to address this problem
use computationally-intensive runtime systems for compartmen-
talization of untrustworthy code, or complex (and seldom usable)
modifications of the language’s compiler for monitoring and sand-
boxing vulnerable or unsafe regions of the code. These solutions
would require major changes to either the Rust compiler or the
unsafe code itself, both of which we want to avoid. Instead, we
focus on a solution that leverages existing language and operating
system mechanisms.

While no prior work addressed memory isolation for unsafe
Rust regions in particular, several previous works have sought to
confine code executing within a single address space. Recent work
such as Shreds [7], lwC [14], and SpaceJMP [12] provide thread-
like abstractions for isolating memory. Codejail [29], a memory
sandbox system, has fewer dependencies and provides a sandbox of
the memory for unsafe libraries. Our approach reverses the sandbox
model by isolating a subset of the trusted region of the program
and providing the rest of the memory to the unsafe libraries.

All the previous works, except Codejail, require some static anal-
ysis or special abstractions. We aim to have a practical and light-
weight solution that allows programmers to make choices about
which parts of the memory to protect, that requires only memory
page permissions that are supported by modern hardware, and that
avoids hard modifications to the operating system, only involving
simple kernel extensions. Our approach is to (i) move sensitive
program data to protected pages before entering unsafe code, (ii)
allow unsafe code to run normally without modifications, (iii) re-
store visibility of the protected state when unsafe code execution
completes, and (iv) incorporate a precise and efficient kernel-level
monitor to ensure unsafe code cannot circumvent protections.

Threat Model Our solution assumes a trusted starting state
in which the operating system, and underlying hardware, are not
malicious and are implemented correctly. FC is designed to protect
the memory of processes executing FC-ified Rust programs, in
which sensitive memory regions are protected by isolated secure
compartments when interacting with foreign function interfaces.
Thus, we assume the code written in Rust is trusted except when
using an unsafe block to call an external library function.

We assume attackers are remote and do not have root privileges
on the target machine (that is, the machine on which FC operates
and is subject to attacks) or any way to interfere with program
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execution other than through the foreign function called by the Rust
program. We assume the attacker can use memory vulnerabilities
in the unsafe code to access data allocated by the trusted program
region, for example, using poorly checked memory boundaries.
Thus, the attacker has access to all memory pages available to
the process in which the untrusted code executes, except memory
pages that are under FC’s protection. The attacker aims to exploit
vulnerabilities in untrusted code to gain control over the program
state in a Rust program.

Contributions We present Fidelius Charm1, a Rust language
library and kernel extension support for creating in-memory secure
compartments by protecting sensitive data in memory from an
unsafe function execution. We discuss the design decisions made
for developing FC, which intends to hide a subset of the trusted
memory regions allocated while executing Rust code. In particular,
our work has four primary contributions:

• Extending Rust’s memory ownership by allowing func-
tions to own their allocated data in secure compartments and
limit access from unauthorized functions (Section 2).

• Designing strong kernel-level protection to maintain
the integrity of FC’s secure compartments bymonitoring and
protecting the underlying APIs, such as mprotect, as well
as performing stack inspection to ensure that access can be
re-enabled only by the intended safe Rust code (Section 2.4).

• Controlling data sharing between a Rust function and a
unsafe library function while providing strong isolation of
the safe and unsafe code using a narrow and controlled data
interface (Section 2).

• Testing FC in case studies to explore its effectiveness and
implementation efforts (Section 3).

FC’s on-demand secure compartments ensure memory protec-
tion and isolation within a single process using architectural sup-
port for memory page permissions. FC’s design is cross-platform
and thread-safe, and requires no modification to the Rust compiler.
Our implementation uses a Rust library and kernel extension, both
of which are available under an open source license. Using FC in-
volves mostly simple modifications to the program’s source code,
and low run-time overhead (Section 4).

2 DESIGN
To control access to memory allocated in Rust while calling an
unsafe code, we designed a compartmentalization technique which
splits the address space into three regions: (i) a private region that
is inaccessible from unsafe functions and is fully accessible from
safe functions, (ii) an immutable region that could be read from any
part of the program, and (iii) an exposed region, which is accessible
from any part of the program. The private and the immutable
regions comprise secure compartments, which are collections of
continuous memory pages with specific permission bits. These
compartments isolate sensitive data from unsafe code by arranging
memory appropriately on pages and changing their permission
bits to read-only or no access. When an unsafe function executes,
depending on the program’s policies (specified by the programmer),
it has limited access to the secure compartments.

1The name Fidelius Charm is inspired by Harry Potter’s Fidelius Charm, which is a
complex spell to conceal a secret in a person.

2.1 Motivating Example

fn process_traffic(traffic: [u8; TSIZE], 
           worker: &Worker) 
       -> [u8; TSIZE]{ 
   fc_immutable(&traffic); 
   let dec = unsafe { 
      decrypt_traffic(&traffic 
           worker.session_key); 
   } 
   fc_normal(&traffic); 
   dec 
} 
fn main() { 
  ... 
  fc_private(&server.key); 
  let dec=decrypt(&traffic, &worker);  
  fc_normal(&server.key); 
  ... 
}
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Figure 1: FC’s user space and kernel components create and
maintain secure compartments in the Rust program’s pro-
cess. Access to mprotect calls is restricted to a specific region
in the code, which controls the secure compartments. The
FC-ified program shows a simplified usage of FC’s interfaces
to create a private (no permission) secure compartment and
an immutable (read-only) secure compartment.

Consider developing a TCP server using worker threads, ex-
cerpted in Figure 1. It uses a Worker structure to hold data for
a client session, and a Server structure to hold data for the
main server program. To store client’s message for processing,
define an array, let traffic = [0; TSIZE]. Also, consider a
Rust function process_traffic that invokes the unsafe exter-
nal function decrypt_traffic, which decrypts traffic using
Worker.session_key.

This simple example includes several aspects that motivate the
need for FC. First, when decrypting the traffic using an unsafe li-
brary function, the Rust function only needs to share the client’s
session key in Worker.session_key, hiding the server’s private
key (Server.key). Second, the Rust function must protect the orig-
inal copy of the client’s traffic and send it as a read-only input to
decrypt_traffic. Third, when processing a Worker’s client, the
Rust function must isolate the sensitive data, for example the ses-
sion keys of another Worker’s client. Also, the list of Workers, and
other server-related data stored in an instance of Server should be
secured before executing unsafe code.

Since the external library implemented in an unsafe language
may have serious security flaws that could allow arbitrary access
to memory [25], any call to decrypt_traffic using unsafe in
Rust potentially exposes all of program’s memory. FC isolates data
objects (i.e., individual variables, referred to as bindings in Rust)
to minimize the exposure when calling unsafe code. For example,
when calling decrypt_traffic to decrypt a client’s message using
its session key, only the worker.session_key is exposed to the
unsafe code; Server.key and all other sensitive data objects stay
in an isolated secure compartment and are temporarily inaccessible
throughout the entire program.
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2.2 Architecture of FC
FC consists of a user space library, a modified Rust program that
links to the library, and a kernel module that maintains access
control for the program’s safe (written in Rust) and unsafe code
(arbitrary libraries) regions. Prior to an unsafe call, the programmer
adds calls to FC’s user space component, which are interfaces linked
to the Rust program and facilitate creating secure compartments.
As shown in Figure 1, the user memory’s data section is divided
into pages that form secure compartments and exposed pages with
read and write access.

The second component of FC is the modified Rust program that
wraps unsafe calls with invocations of FC’s functions. For exam-
ple, in the FC-ified program of Figure 1, process_traffic cre-
ates a read-only secure compartment. The code following a call to
fc_immutable changes the program’s state to the isolated mode,
in which some of the original memory page permission bits are
modified. A subsequent call to fc_normal reverses the program’s
state to exposed mode with all data section page permissions are
reversed to read and write. The main function creates a private
secure compartment that hides the server’s sensitive data.

FC’s user space library serves as a client for its third component,
a kernel module that implements a mandatory access control by
separating the code section of the user space into two groups: (i)
the code written in Rust that has the right to issue mprotect calls
and modify page permissions, and (ii) the code written in arbitrary
languages, which cannot make mprotect calls on pages that are
tagged as secure compartments. As detailed in Section 2.4, the
kernel module maintains the secure compartments and mediates
access to memory page permissions.

2.3 Secure Compartments
FC enables two memory permission modes for its secure compart-
ments: immutable (read-only) and private (inaccessible). The default
memory permissions are set by the process at the time of allocating
memory pages, which FC does not change. The design of FC faces a
key challenge to maintain the integrity of the secure compartments
within a single virtual address space by preventing the unsafe for-
eign functions from accessing the enclosed memory pages. The
problem is that both the trusted Rust code and the untrustworthy
foreign function are sharing a process, giving them equal operating
system-level privileges for modifying memory page permissions.
A seemingly simple solution would be to isolate the unsafe code
in a separate process. However, this solution requires nontrivial
changes to existing code, and can potentially interfere with con-
currency in existing Rust programs, which benefit from Rust’s
clear and memory-safe concurrency model. Our solution preserves
the current concurrency structure of the code while providing an
inexpensive mechanism to maintain the integrity of secure compart-
ments, specifically by disabling the unsafe code from subverting
the policies set by the Rust code.

Creating andReversing SecureCompartmentsAs shown in
the FC-ified code of Figure 1, one private secure compartment holds
server.key and an immutable secure compartment holds traffic
and worker.session_key (since both are on the same memory
page, one call to FC will create a shared secure compartment for
traffic and worker.session_key).

Creating the secure compartments starts with a trusted Rust
function call to fc_immutable(var) (or fc_private(var)) to pro-
vide protection for all data objects in the memory page where var
exists. In the example code of Figure 1, this is repeated twice since
the secure compartments must be separated by the level of access
provided to the unsafe code (a secure compartment cannot be both
immutable and private). First, FC examines the number of allocated
pages, determines the page addresses, and applies the appropri-
ate permissions to the pages (i.e., PROT_READ for immutable and
PROT_NONE for private), creating two secure compartments. Next,
FC issues a system call, sending the kernel a list of page addresses
that will be in the program’s secure compartments (regardless of be-
ing in immutable or private compartments) to deny using mprotect
on the specified pages. FC also makes a system call to specify a
designated trusted region (an address in the code section pointing to
a function in FC) in the code, which will be allowed (by the kernel)
to make mprotect calls for reversing page permissions in the se-
cure compartments. The kernel records the trusted region’s address
and page addresses in a protected address table (Section 2.4) and
monitors requests to modify permissions of the protected pages.

2.4 Kernel Module
To designate a trusted region for kernel protection, we implemented
a Linux kernel module that traps all mprotect calls (from those pro-
cesses carrying a special signal from FC) and monitors the protected
memory pages.

The kernel extension determines when a call to change page
access permissions is legitimate based on code regions. The idea is
to designate a specific address rangewithin the Rust code at the time
FC creates a secure compartment. The designated address range
is communicated to the kernel extension, which will subsequently
only allow modifications of the secure compartments to originate
and return to the specified address range. The address range is
computed at run time according to the fully linked executable.

For security, FC’s kernel extension requires that (i) the loaded
code to be immutable across the process, except by the operating
system or the program loader, (ii) an address A in the code section
(address of a function in FC’s code, linked to the Rust program),
which the kernel can trust to allow mprotect calls to return to, and
(iii) the first system call from the user space FC, which explicitly
asks the kernel to restrict access to mprotect except those returning
to A, is trustworthy (done before any unsafe code is executing).

Code Section Permissions The page permissions for the code
section (.text in the linked ELF) must be set to PROT_READ, which
is ensured by the Rust compiler.2 FC’s kernel extension monitors
the page permissions for the code section and deny all mprotect
calls to them. This monitoring is only for the parts of the Rust code,
which must be given the rights to call mprotect, which is a small
subset of the READONLY .text section that fits in a memory page.

Designating the Trusted Region As described in Section 2.3,
FC’s user space component invokes the kernel component with
a system call (FC reuses existing system calls to avoid modifying
the kernel) before executing an unsafe function. After creating se-
cure compartments, a call to fc_protect(var) will send the page
address on which var exists along with the address of the trusted

2As tested with the Rust’s compiler rustc 1.14.0 (e8a012324 2016-12-16).
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region to the kernel (through a system call). fc_protect(var)
computes the address of the trusted region as a fixed offset relative
to the linked address of fc_protect(var) itself. That is, depending
on the number of instructions in fc_protect(var), the offset is
manually computed and hard coded in FC’s code and is relative
to the address given to fc_protect(var) by the linker. The off-
set must only be changed if the logic of fc_protect(var) was
changed.

fc_immutable(&traffic); 
fc_protect(&traffic); 
let dec = unsafe { 
   decrypt_traffic(&traffic 
        worker.session_key); 
} 
fc_normal(&traffic);

Kernel

FC
fc_protect

Trusted and 
immutable 

code region
FC-ified Rust program

Protected 
Address Table

Trusted calls

Figure 2: The trusted region is an address (in the code of FC’s
user space library) to which calls from mprotectmust return
to, which is ensured by FC’s kernel module.

Designating the trusted region must come from a trusted part
of the code, which is code written in Rust and is assumed to have
compile-time memory guarantees. As the programs must always
start execution in Rust’s main function, assuming the programmer
has FC-ified the program around all calls to unsafe foreign func-
tions, the first use of fc_protect(var) is trusted to be from the
Rust program. In the example shown in Figure 2, a new line of code
is added to the body of process_traffic (from Figure 1), which
performs the trusted call. Upon receiving the call, FC’s kernel mod-
ule disables mprotect and records the address of the protected page
and the trusted region’s address in the protected address table. The
trusted code region’s address is the address to which subsequent
mprotect calls on the protected memory pages must return. The
call to fc_normal perfroms a system call asking FC’s kernel module
to first allow calls to mprotect and then reverse page permissions.
Before re-enabling mprotect, the kernel checks the instruction
pointer of the requesting task to verify the return address from
the call against the recorded address in the protected address ta-
ble. When a malicious call to fc_normal is made, the instruction
pointer has an invalid address, and FC’s kernel module’s policy
policy is to kill the process (although other actions could be used
for applications where fail safety is important). We will further
analyze the security of FC’s kernel module and possible attacks in
Section 2.5.

2.5 Security Analysis
We examine the security guarantees achieved by FC from an at-
tacker’s perspective. According to our threat model, the attacker is
only capable of a remote attack, for example by crafting requests to
a server. FC’s effectiveness depends on both the attackers goals and
capabilities, and how much data the program exposes to vulnerable
unsafe components.

Protection Against Data Attacks The main goal of FC’s de-
sign is to thwart attacks that depend on reading or modifying
sensitive data in the program’s memory. The attacker’s gateway
to the program’s memory is through unchecked memory bound-
aries in the unsafe external library. Once exploited, the attacker
can potentially search through all accessible memory to find the
target data. The attacker’s task is easier when the calling frame
from the trusted region can be identified (for accessing stack data),
and when a reference to memory allocated on heap is passed to the
unsafe function.

First, identifying the calling frame enables the attacker to ac-
cess data allocated in the trusted region. This data is completely
protected by FC, except for any data that is on the calling frame’s
page. Provided that the programmer does not violate FC’s intended
usage (by not declaring sensitive data objects in the calling frame),
the attacker cannot manipulate or read data on the stack. Second,
when the unsafe function has a pointer to a memory allocated in
the heap, the attacker can identify the region of the memory that
is likely to contain sensitive data. As heap is allocated on consecu-
tive memory addresses, the attacker can attempt to access pages
that may belong to the heap. FC protects memory in the heap as
requested by the programmer. Thus, all memory pages that were
designated to move to secure compartments are not accessible by
the attacker, when executing in isolation mode. One limitation of
FC is that there may be heap memory allocated for libraries that are
not visible to the programmer. It is also important to note that any
data in memory that is used as indirect jump location or memory
reference is potentially sensitive; if such references are exposed to
the adversary, they may be corrupted to allow jumps that bypass
FC protections or to copy sensitive data into locations that are not
protected in a future unsafe call.

Bypassing FC’s protection Bypassing FC involves issu-
ing calls to mprotect with a list of addresses to be set to
PROT_READ OR PROT_WRITE. First, the attacker is required to iden-
tify which memory pages are of interest. Second, a separate call to
mprotect is needed for each memory page. An alternative is that
the attacker brute-forces the range of all virtual memory addresses
and sets the protection for all pages to PROT_READ OR PROT_WRITE.

FC’s primary line of defense is the kernel-level discretionary ac-
cess control based on code regions. As explained in Section 2.4, FC’s
kernel module only allows mprotect to succeed on memory pages
that are not in the list of the task’s secure compartments. Also, FC
will not allow such calls to succeed if the current task’s instruction
pointer does not indicate the address of FC’s library function in
the trusted region, which renders the attack unfeasible. There is,
however, a possibility of launching a return-oriented programming
attack by chaining a set of gadgets within the trusted region to call
mprotect and trick the kernel to releasing secure compartments.
The limitation of this attack is that the only possibility of an execu-
tion path is to re-execute the calling trusted function to first release
the secure compartments and then make a call to the unsafe library
function allowing the attacker to continue execution within the
unsafe function. Such an attack is not possible as calls to FC should
always create the secure compartments first and then release them,
calling the unsafe function in between. Repeating this execution
only trigger’s FC’s kernel module to be cautious of the process and
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terminate it as this will involve multiple consequent calls to create
secure compartments.

3 CASE STUDIES
FC assumes a knowledgeable programmer who uses its core func-
tions to perform the necessary protections. In general, FC’s pro-
tections could be highly automated, but our current implemention
only automates stack protection. As automating heap protection
involves many low-level details including implementing a custom
memory allocator, we leave it for future work. We present here
our experience in FC-ifying a server based on Rust’s openssl crate
(https://github.com/sfackler/rust-openssl); we also FC-ified a simi-
lar Rust TLS server based on the hyper crate (https://github.com/
ctz/hyper-rustls/) but since the experience and results were similar
we only describe openssl in detail here. We show performance
results for both in Section 4.

FC-ifying openssl The openssl crate relies heavily on the for-
eign function interface to fully implement a TLS server based on the
functionality provided in the original openssl library implemented
in C. Similar to hyper, the server using openssl can be FC-ified
for protecting the acceptor object when handling a client.

An acceptor object contains the server’s credentials. The accep-
tor is stored in a Mutex, which is in turnmanaged by a heapmemory
under an instance of Arc. The objective of the FC-ified openssl
implementation is to secure the heap page that contains the server’s
private key. For each incoming connection, at the time the client
is served in a dedicated thread, the program no longer needs ac-
cess to the acceptor. Thus, after the thread receives a pointer to
the acceptor (acceptor.clone), locks the Mutex (acceptor.lock),
and finally accepts the connection (acceptor.accept(stream)),
a call to fc_protect(acceptor_addr) will result in a secure com-
partment for the heap page on which the acceptor resides. This
secures the private key which will be inaccessible to the un-
safe code. The call to fc_auto_stack and the corresponding call
to fc_auto_stack_reverse will automatically protect the stack
pages, and the call to kernel_disable! and kernel_enable!
(kernel_disable! and kernel_enable! are macros to facilitate
using FC’s interface with the kernel fc_protect as described in Sec-
tion 2.4) that restrict access to sys_mprotect. The call to a helper
macro, stack_padding! allocates auxiliary memory on stack, en-
suring that the data allocated prior to the call remains on a separate
virtual memory page.

Attacks Thwarted FC can be used in various ways depending
on the needs. The main goal is to prevent exposing the server’s cre-
dentials and the program’s state (mainly on stack) when interacting
with untrustworthy clients and executing unsafe code. For complex
servers, the handling function may include references to commod-
ity unsafe libraries that can jeopardize the security guarantees of
the program, causing arbitrary data leak. FC guarantees that the
explicitly protected data remains unreachable when such an attack
occurs. FC releases the secure compartments, when called through
fc_normal, after completing a client processing. This ensures that
the server’s credentials are only accessible when the server can
make sure a malicious client is no longer connected. A slight limita-
tion of this implementation is when serving clients for long periods,
which can cause long delays for concurrently connecting clients

1 fn openssl_listener() {

2 let acceptor = load_ssl_acceptor();

3 stack_padding!();

4 let acceptor = Arc::new(Mutex::new(acceptor));

5 let acceptor_ptr = acceptor.clone();

6 let acceptor_addr = memory_page_addr!(*acceptor_ptr);

7 let listener = TcpListener::bind(SERVER_IP).unwrap();

8 for stream in listener.incoming() {

9 match stream {

10 Ok(stream) => {

11 let acceptor = acceptor.clone();

12 let child = thread::spawn(move || {

13 let acceptor = acceptor.lock().unwrap();

14 let mut stream = acceptor.accept(stream).unwrap();

15 fc_private_u(acceptor_addr);

16 fc_auto_stack();

17 kernel_disable!(acceptor_addr as usize);

18 handle_client(&mut stream);

19 kernel_enable!();

20 fc_auto_stack_reverse();

21 fc_normal_u(acceptor_addr);

22 });

23 child.join().unwrap();

24 }

25 Err(_) => { /* connection failed */ }

26 }

27 break;

28 }

29 }

Figure 3: Starts a FC-ified server, while protecting the
server’s private key after a new client connection is estab-
lished. This function is thread-safe and does not cause seg-
mentation fault for accessing the protected acceptor.

(as the acceptor object is locked while serving the client). One can
prevent this limitation by generating multiple copies of the acceptor
with a pool of worker threads model. Each thread would use FC to
protect its own copy.

4 PERFORMANCE
This section reports on our experiments to evaluate the run-time
cost of FC, first showing results on a set of microbenchmarks, and
then reporting application-level performance measurements on the
openssl and hyper case study applications from Section 3.

4.1 Microbenchmarks
For the microbenchmarks, our goal is to understand the cost of each
of the operations involved in using FC. We use Rust’s benchmark-
ing interface to measure the cost for creating secure compartments,
launching and processing a plain openssl request, and launch-
ing and processing a FC-ified openssl request, as implemented in
Figure 3.

Table 1 reports the cost of using FC’s main interfaces. The Base
benchmark is an empty closure for measuring the benchmarking
interface’s cost. The Padding benchmark is a closure which isolates
two memory pages using 512 × 64 byte arrays. Creating Secure
Compartment is a closure that introduces padding, modifies the

https://github.com/sfackler/rust-openssl
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isolated page’s permissions, communicates the page address to the
kernel module, and reverses page permissions and requests the
kernel to re-enable access to the specified page address.

The last two rows in Table 1 compare the time require to launch
an openssl-based HTTP server and processing a single client using
a plain Rust implementation and a FC-enabled implementation. The
results shown are the average over multiples of multi-iteration tests,
in which some of the tests did not distinguish the difference at all.
FC’s cost is negligible relative to the overall cost of openssl. The
cost of FC is slightly more noticeable in the system benchmarks
presented next. We performed the tests on a vmware Workstation
virtual machine on a local disk with Ubuntu 15 as the host system,
configured to use two of the available four cores and two GBs of
memory.

Experiment Time (ms)
Base 0.000024
Padding 0.0054
Creating Secure Compartment 0.0105
openssl server 14.342
FC-ified openssl server 14.385 (0.29% increase)

Table 1: Microbenchmark results.

4.2 System Benchmarks
In the second and third settings, we test the performance of unsafe
operations in TLS-based HTTP servers, which either use unsafe
operations for invoking openssl operations or make calls to Rust’s
ring library, which in turn makes unsafe calls to cryptographic
functions. We perform a time comparison between a plain HTTP
server that doesn’t use FC and an FC-ifiedHTTP server. FC’s latency
includes the small overhead of the kernel module, which is disabled
in experiments without FC.

HTTP server Measuring the throughput of a openssl-based
and a hyper-based HTTP server required implementing bench-
marking tools for a precise measuring of the contribution of each
thread in processing the requests. In the openssl-based server,
for each request three secure compartments are created prior to
handling the process and one secure compartment is created for
handling the process. We measure the throughput by running the
test for 60 seconds while automatically sending HTTP requests in
intervals of 10 milliseconds, collecting the number of successfully
processed requests at the end of the experiment. In each iteration, all
four secure compartments are created and destroyed. FC maintains
modest overhead even when handling 128 simultaneous request
threads, reaching a pick decrease of 5% in the number of requests
processed in 60 seconds. FC’s overhead was noticeable when every
request involved 50 calls to ring for computing a file’s digest, with
an average decrease of 13.69% processed requests occurred. Finally,
when using a duration of 30–100 seconds with a fixed number of 16
simultaneous requests processed in intervals of 10 milliseconds, the
average decrease in the number of requests processed was 8.30%
(Figure 4.

In the hyper-based server, the throughput was measured similar
to the benchmark of Figure 4 in which a growing number of threads
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Figure 4: Throughput of an openssl HTTP in 30–100 sec-
onds. Each request has 50 calls to ring’s digest. In the FC-
enabled server, each digest iteration creates and releases a
secure compartment.

send simultaneous requests. All requests were implemented as echo
requests. In the FC-enabled version, during the time the client is
served, the server’s private key is totally isolated and is unusable.
To serve multiple clients, for each request, the private key is cloned
and once the shared key is established, the cloned private keywill be
kept in a separate secure compartment. The result of the experiment
is in Figure 5, showing an average decrease of 1.38% in the number
of requests processed.
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Figure 5: Throughput of a Hyper server using Rust TLS in 60
seconds. Requests are sent locally using 2k threads for k ∈

[0,7].

5 RELATEDWORK
The goal of isolating code components (also referred to as appli-
cation compartmentalization) is a long-standing goal of our com-
munity and has been the focus of extensive research in operating
systems, programming languages, and architecture. This is the first
work to focus on isolating unsafe code within a single address space
for Rust programs.

In terms of our memorymodel and isolation techniques, previous
works most similar to FC include Native Client [30], Codejail [29],
HideM [9], SeCage [15], Shred [7], lwC [14], and SpaceJMP [12].
We discuss these next, followed by a brief account of classical work
on software fault isolation and the principle of least privilege.
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Sandboxing Libraries Native Client [30] provided memory
sandboxing for libraries, allowing limited interaction with the
trusted program using remote procedure calls. Fidelis Charm and
Native Client (NaCI) share the main objective of limiting external
libraries, however, differ in approach and applicability. In contrast
with NaCI’s approach for loading libraries in limited containers, FC
contains the trusted memory when interacting with unsafe libraries.
Codejail [29] proposed an enhancement of the idea by sandboxing
a library by disallowing write access to the program’s data, making
the sensitive memory read-only. The program would selectively
allow write access to its data, when a tight interaction with the
library is needed. Codejail shares FC’s goals in (i) proposing a se-
cure memory sharing model that does not require modifications
to the library and (ii) supporting tight and limited interactions
with an untrustworthy library. Aside from focusing on Rust, FC
is distinguished in that the memory of the trusted program is the
sandbox, instead of the library, and unless a data object must be
shared with the library, the entire memory allocated either on stack
or heap of the trusted Rust code is inaccessible to the library. This
key difference in memory sandboxing model overcomes Codejail’s
limitation of libraries within a specific memory regions.

Various techniques have been developed for confining and limit-
ing processes or groups of processes (e.g., [1, 8, 10, 13, 18, 19, 23]),
aiming for isolating vulnerable software from critical system re-
sources. In the design of FC, a sandbox would avoid incuring un-
necessary latency as our goal is to isolate code at the fine level
of (often frequent) unsafe calls. That said, sandboxing using Intel
enclaves [13] can provide improved security for FC’s kernel module.

Memory partitioning Shared memory among distrustful
threads within a single process is addressed by Arbiter [27], which
proposes to use memory permission bits to protect a thread’s data
from another. Arbiter uses to a policy manager that understands
programmer-annotated privileges and enforces them. FC uses mem-
ory page padding to separate and isolate data objects based on a
simple binary permission system (immutable or private). The kernel
component in FC only enforces FC’s integrity and does not need
to enforce application-level policies. HideM [9] takes a radical ap-
proach by using split-TCB to show different contents of a page for
different CPU operations, hiding data when a specified code region
should not have access to it. In contrast, FC temporarily hides the
actual memory page and isolates the data when an explicit interac-
tion with an untrustworthy library function occurs. SeCage [15]
is similar to HideM in providing different views of the memory
according to separated privileges. Using hardware virtualization,
SeCage targets a strong adversary model in which the operating
system does not need to be trusted.

Shred [7], light-weight context (lwC) [14], and SpaceJMP [12] are
new methods for splitting the virtual address space into multiple
distinct sections aiming for isolating untrustworthy code. Shreds
and lwC introduce abstractions similar to threads. To protect data
across a program, Shred provides a set of programming interfaces to
request creating and moving data into separate Shreds. At runtime,
Shreds are implemented using Intel’s memory protection keys. A
lwC, in contrast, does not work with memory permissions directly
but creates separate address spaces, when the programmer requests
that using the programming interfaces. SpaceJMP is similar to lwCs
in using multiple virtual address space, differing from lwCs in that

SpaceJMP enablesmemory sharing acrossmultiple processes.While
FC is similar to these in that it provides an interface for isolating
memory regions, it does not propose a new operating system model
and does not require switches between address spaces.

Other related work but farther away have provided interesting
contributions for application compartmentalization, mainly with
narrow and specific applicability. For example, Mimosa specifically
targets cryptographic keys and uses hardware transactional mem-
ory to ensure that no process, other than Mimosa, can access the
keys. Mimosa uses encryption to hide the keys, when the system is
idle. Although FC and Mimosa agree on a high level goal of hiding
data objects in memory, FC differs in that it uses memory isolation
without the need for hardware transactional memory and works
with arbitrary data. DataShield [5] protects data in C++ programs
by disallowing pointer dereferencing based on programmer annota-
tions. Song et al. propose a data-flow integrity approach to infer and
enforce correct flow of sensitive data in kernel space [24]. Lastly,
SOAAP [11] is a reasoning tool for assisting programmers in using
application compartmentalization to avoid security and correctness
errors. We envision a similar tool for our future work to support
programmers with FC and automate the task of locating unsafe
regions and the data objects that must be isolated.

Software fault isolation has consistently received attention
during the past decades. Simple solutions such as placing the faulty
code, or the unsafe code, in a separate address space seem viable,
although for merely a call to an unsafe function, the unnecessary
context switches are too much of a burden. Wahbe et al. pioneered
the design of logically separated fault domains within a single
address space [26], which was followed by an effort to isolate ad-
dressability from accessibility in Opal, a single-address-space 64-bit
architecture [6]. The work in [26] described a model in which fault
domains are separated based on the code region through restrict-
ing the execution of one to jump to another. This model inspired
our kernel-centric code region discrimination design, with a fun-
damental difference; FC would not require an RPC interface to
enable cross-domain interactions. In fact, FC imposes no particular
paradigm on the program and automates code region separation
through a kernel extension.

The principle of least privilege [22] is the theme of a num-
ber of previous work that promised least privilege isolation. With
resource containers [2] separating access control from execution,
isolation progressed further towards decoupling scheduling from
security requirements, which were a fundamental design issue with
process management in modern monolithic kernels. The work by
Provos et. al set a clear goal: privilege separation within an applica-
tion forbids programming errors in the lower privileged code from
abusing higher privileged code [20]. However, privilege separation
was a return back to the use of processes as basic blocks for isola-
tion, reusing UNIX per-process protection domains. Privtrans [4]
automated privilege separation using programmer annotations, par-
titioning a program into a monitor and a slave program, continuing
the efforts of isolation at the process level. Sthreads in Wedge [3]
introduced default-deny compartments within a single monolithic
program, spawning new threads, not entire processes, for isolating
parts of the program. Sthreads enjoy programmer tagged memory
access rights, which are enforced at runtime. Programmer annotated
privileges were also introduced for isolating kernel modules [17]
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from core kernel services to prevent privilege escalation. Similarly,
Trellis [16] allows code-annotated privileges (mainly for memory al-
locations), which are enforced by the kernel at runtime. CHERI [28],
a hardware extension relying on a capability co-processor, supports
compartmentalization for in-address-space memory isolation tar-
geting the C language.

Finally, RustBelt [21] develops a subet of Rust, namely λRust ,
and uses to prove the safety of Rust programs. An important result
provided by RustBelt is verification of safety while using unsafe
interactions with linked libraries. Rustbelt verifies a λRust program
with unsafe code has safely encapsulated the externally linked
library using within Rust wrappers.

6 CONCLUSION
Rust provides strong memory guarantees using zero-cost abstrac-
tions, but any non-trivial Rust program today includes unsafe code
and most fall back on using libraries in unsafe languages. A long-
range goal should be to eliminate the need for any unsafe code—
developing native Rust libraries when possible, and when arbitrary
memory operations are needed using more powerful formal meth-
ods to prove the safety of code that cannot be proven safe by Rust’s
compiler. A practical path to dramatic improvements in program
safety and reliability, however, requires combining safe and unsafe
code. Incorporating any unsafe code into a Rust program, however,
abandons all of the safety guarantees. Fidelius Charm provides a
step towards safe incorporation of unsafe code by isolating sensi-
tive data in memory from the unsafe code. We achieved a high level
of isolation, without requiring any compiler changes or complex
abstractions, and in a way that can be applied to any Rust program
when interacting with any unsafe library function.
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