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ABSTRACT
Many Android vulnerabilities share a root cause of malicious
unauthorized applications executing without user’s consent.
In this paper, we propose the use of a technique called pro-
cess authentication for Android applications to overcome
the shortcomings of current Android security practices. We
demonstrate the process authentication model for Android
by designing and implementing our runtime authentication
and detection system referred to as DroidBarrier. Our mal-
ware analysis shows that DroidBarrier is capable of detecting
real Android malware at the time of creating independent
processes. A performance evaluation of DroidBarrier unveils
its low performance penalties.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls

General Terms
Security

Keywords
Android system security, authentication, malicious pro-
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1. INTRODUCTION
An important feature of the Android operating system

is that it relies on mature technologies such as the Linux
kernel. In particular, Android’s Dalvik runtime system relies
on Linux process creation when launching an application or
a service, making the runtime system as the parent process
of all user application processes in Android.

With the assistance of the Linux kernel, Android im-
plements a fundamental security feature called application
sandboxes. Android’s approach is to install each application
with an isolated sandbox to protect its data from unautho-
rized accesses by other applications, by means of file system
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permissions and creating independent processes for each ap-
plication at runtime. Similar to other Linux-base systems,
Android suffers from numerous vulnerabilities that cause the
Android’s application sandboxes to fail. For example, the
Gingerbreak exploit affected the popular Android 2.3 en-
abled a malicious application to gain root privileges and
completely bypass Android’s application sandboxes. This
privilege escalation is used to establish attacks on various
system and user resources. Malicious applications can then
exploit other vulnerabilities above the Linux kernel level
such as the ones in Android’s inter-component communi-
cations [7, 15]. A malicious application may launch attacks
to misuse system resources with the goal of spying on users,
stealing private user data, and causing financial loss [16].

To combat the security vulnerabilities in Android, current
state of the art focuses on a wide range of approaches. There
have been proposals for using virtual layers to separate ex-
ecution domains [3], using control-flow to limit access to
data [13], and protecting inter-component communications
in Android’s Binder [11]. Despite Android’s heavy reliance
on its Linux-based security sandboxes, with a few excep-
tions (e.g., [25]), existing security solutions barely attempt
to enhance the security capabilities of the Linux kernel in
Android. Prior work specifically targeting traditional Linux-
based systems (e.g., [2, 20, 29]) are not directly applicable
to Android. This limitation of security solutions for Linux-
based systems is because of major differences in the system
architecture, application and security models used in An-
droid, despite the reliance on a modified Linux kernel.

In this paper, we present a technique, referred to as process
authentication for Android applications, that complements
the Android’s sandbox mechanism and provides strong pro-
tection for system resources against malicious and unautho-
rized applications. The concept of authentication has been
previously applied and used by (i) Quire [11] for provid-
ing provenance proof on inter-component communications
in Android, (ii) A2 [2] for authenticating native Linux appli-
cations, and (iii) the authenticated system calls [27] for pre-
venting misuse of system calls. However, developing an au-
thentication model for Android applications imposes unique
technical challenges since the Android framework primar-
ily runs Java applications running in virtual machines and
makes use of features such as application services that run
in background. These and other Android features require
rethinking application and process authentication, which is
the subject of our work.

Our key observation is that critical vulnerabilities in An-
droid share a root cause: malicious applications that are in-



stalled and executed without the user’s consent. Our process
authentication model addresses the problem by regarding
application processes as individuals that must be authenti-
cated before using system resources. In this model, legit-
imate applications are given credentials that are used for
authentication at runtime. When enforcing process authen-
tication, unauthorized processes that do not possess creden-
tials fail to authenticate. This failure results in denying
access to critical system services provided by the kernel.

The main property of our process authentication model is
enabling the detection of unauthorized processes at runtime.
To demonstrate this property, we design and implement
DroidBarrier, a runtime system, that enforces a mandatory
authentication on all processes for any application in An-
droid. Using this mandatory authentication enforcement,
DroidBarrier guarantees the detection of processes that fail
to authenticate and prevents their subsequent attacks. Our
technical contributions are summarized below.

1. Process authentication model. We present a process
authentication model and discuss the security require-
ments and guarantees of our model. We discuss a gen-
eral set of operations needed to implement our model
at runtime.

2. Runtime system. We design a runtime system called
DroidBarrier that is capable of detecting unauthorized
processes. Our runtime system mediates the authen-
tication between a process and the kernel. Our design
does not require modification of existing applications
or Android’s Dalvik runtime system.

3. Implementation. We implemented and tested Droid-
Barrier for a physical Android device. Our implemen-
tation consists of patches to the kernel, a set of tools for
process monitoring, authentication, and a lightweight
access control system in the kernel.

The fundamental difference between our approach and re-
lated work such as [1, 2, 3, 11] is that our process authen-
tication for Android is a general and scalable model specifi-
cally for authenticating any Android native and Dalvik ap-
plication processes, taking into the consideration that appli-
cations might comprise of several heterogeneous processes
for UI activities, background services, or native tasks. We
achieve this generality by using the process abstraction to
separate the identities of processes using uniquely issued se-
cure credentials that are managed by DroidBarrier.

Per our evaluation, DroidBarrier detects and stops mali-
cious processes of three major Android malware categories
with hundreds of instances. According to our performance
experiments on a physical Android tablet, DroidBarrier has
negligible performance penalties in process creation. It also
shows a maximum and a minimum I/O performance penalty
of 12.92% and 3.76%, respectively.

The rest of this paper is organized as follows. In Section 2,
we present a motivating example, followed by our security
analysis and the description of the process authentication
model. Section 3 describes the details of DroidBarrier and
its functions. We describe the implementation of DroidBar-
rier and our experiments in Sections 4 and 5, respectively.
Finally, we discuss the related work in Section 6 and con-
clude in Section 7.

2. MODEL AND OVERVIEW

In this section we present the problem and an overview of
the solution. We also discuss our security model and present
the process authentication model.

2.1 Problem Statement and Overview of the
Solution

We address the problem of preventing stealthy installation
and execution of malicious applications in Android-enabled
devices. This is a root cause of many malicious attacks that
exploit other vulnerabilities in Android, with attack goals
such as stealing private data and incurring financial loss.

Motivating example attack. We conducted a runtime
analysis of three sets of Android malware DroidKungFu,
BaseBridge, and AnserverBot. Each of these malware sets
have a number of variants with nearly identical malicious
activities with differences in their user interface elements.
According to our findings, and the results in [33] and [34],
these malware sets rely on malicious shell scripts (running
in independent processes) to perform a privilege escalation
exploit. In Section 5.1, we discuss that our runtime system,
DroidBarrier, is capable of detecting and stopping these ap-
plications at the time of creating processes that fail to au-
thenticate.

To demonstrate the problem, we construct an example at-
tack scenario that is common to these (and other) malware
categories. As depicted in Figure 2.1, the remote attack
exploits two vulnerabilities that result in execution of mali-
cious applications without the user’s permission. In the first
phase of the attack, a vulnerable client is exploited to exe-
cute a payload that downloads a native malicious executable.
In the second phase, the downloaded native binary exploits
a vulnerability in a system task (e.g., Android debugging
bridge daemon) to gain root privileges. Having root priv-
ileges, the native binary bypasses Android’s sandbox and
installs applications on the file system without asking for
the user’s permission.

Once the malicious application is installed with all the
requested permissions defined in its manifest file, it can con-
duct further attacks. The key element to this attack strat-
egy is the ability to install applications without the user’s
explicit authorization. DroidBarrier does not directly detect
the payload that is downloaded to install malicious applica-
tions. However, DroidBarrier is designed to prevent such
installations by means of detecting their unauthenticated
processes, thereby foiling this form of attack.

Challenges and Goals. To develop a solution for protecting
the system from execution of unauthorized malicious appli-
cations, we face two technical challenges:

• The kernel only enforces file system permissions, and
provides memory isolation for processes. In Android,
the kernel lacks advanced capabilities to detect possi-
ble misuse of root privileges.

• Because Android application processes execute in vir-
tual machines and are managed by the Android run-
time, monitoring application processes inside the ker-
nel, without modifying the runtime, faces a semantic
gap.

To address these challenges and develop a mechanism that
can detect installation and execution of unauthorized appli-
cations, this work has the following goals:
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Figure 2.1: A remote attack sequence to bypass An-
droid’s sandbox and install malicious applications
without user’s permissions. In the first and second
detection points, the application creates processes
that can be detected by DroidBarrier.

• Providing a mechanism for the kernel to authenticate
processes and unveil the existence of malicious appli-
cations.

• Detecting malicious processes at runtime with high
confidence about their origins. In our detection, we
reconstruct the semantics between the kernel and An-
droid’s runtime by monitoring process forks and the
runtime’s subsequent loading of application class files
into the newly created processes.

In our process authentication model, the kernel enforces a
mandatory authentication on every process. The user des-
ignates, in advance, which applications are allowed to run,
and thus, has full control on the execution. Our runtime
system, DroidBarrier (Section 3.2), implements our process
authentication model. DroidBarrier continuously monitors
low level process creation functions in the kernel to effec-
tively enforce the mandatory authentication policy.

2.2 Security Model
Security assumptions and trust model. We trust the ker-

nel’s code and the isolation of memory provided by the ker-
nel used in Android. We assume that the integrity and con-
fidentiality of kernel’s memory are preserved. Further, we
assume that Android’s system software and processes do not
intentionally contain malicious functionality.

Attack model. We target the following methods of attacks.
We first categorize the attacks according to their installation
approach.

• Remote attacks. As shown in the example attack
in Figure 2.1, remote exploitation attacks start by re-
motely exploiting a vulnerability in an application.
For example, attackers can exploit the many vulner-
abilities in Android’s WebView API (that applica-
tions use to show specific web pages) to trigger drive-
by-downloads [23] and install malicious applications.
These attacks can download the application and use
system vulnerabilities to bypass user’s permission for
installing the application.

• Physical attacks. Using a physical communication
channel such as Android Debug Bridge (adb) daemon
to install malicious applications [32]. In this case, the
attacker has physical access to the device and the at-
tack goal is to install malicious applications without
the user’s knowledge. These attacks either require that
the device is not password protected or existence of a
system vulnerability to bypass the password protec-
tion.

According to their execution dependencies attacks are fur-
ther categorized into two main classes:

• Dependent attacks. The malicious code runs in a
compromised application’s processes. Thus, the mali-
cious code depends on another legitimate application
to continue execution.

• Independent attacks. The malicious code needs to
run in at least one independent process that is created
by a native code or a Dalvik application.

In this paper, we specifically target independent (phys-
ical or remote) attacks that require installation of mali-
cious applications with full capabilities. independent attacks
are widely seen in Android malware samples. As pointed
out in [34], there are powerful malware species (such as
DroidKungFu) that cannot achieve their effects if they ex-
ecute within the context of a compromised legitimate pro-
cess. These attacks need (i) additional functionality that is
not provided in the context of a legitimate application, and,
(ii) they need to continue execution when the compromised
legitimate process is terminated.

In case of dependent attacks (such as return-oriented pro-
gramming [10]) that complete with no independent pro-
cesses, the malicious payload may be limited to achieve all
its functionality within the boundary of a legitimate appli-
cation. We realize the importance of such attacks, however,
they are out of the scope of our current attack model.

2.3 Process Authentication Model
To achieve our goals for protecting Android from malicious

applications that could be installed without the user’s con-
sent, we use a process authentication model that can detect
malicious application executions. Our process authentica-
tion model (also referred to as authentication model in this
paper) regards application processes as individual principals
that must be authenticated at runtime. Our mandatory
authentication provides legitimate applications with valid
application credentials, and, detects malicious applications
that lack such credentials.

Our goal is to authenticate individual application pro-
cesses at the time of creation. Since applications are loaded
in separate processes at runtime, our authentication model
requires each process (that is created by an Android applica-
tion) to be authenticated by the operating system. Inspired
by authentication mechanisms in communications protocols,
we assign a credential to each application. There are various
ways to instantiate application credentials. A credential is
a secure piece of information that can strongly authenticate
a process and bind it to its application code at runtime. We
define a secure application credential below.

Definition 1. A secure application credential (SAC) is
a unique secret issued to an application by a trusted process.



Each SAC is associated with exactly one installed Dalvik or
native application.

Our authentication model’s policy is to enforce a manda-
tory authentication for each process. The authentication is
based on using the secure application credential (also re-
ferred to as the credential in this paper) provided to the
application that created the process. We also define two
special processes called the verifier process that represents
the authenticator (i.e., the operating system), and, the reg-
istrar process that is responsible for registering application
credentials.

Definition 2. The verifier process π is a trusted process
that has the authority of authenticating other processes.

Definition 3. The registrar process ρ is authorized to
perform the registration of an application by associating an
application bundle with a unique SAC. The registration of
the application is performed at install time with explicit user
permission.

To implement a secure authentication method and prevent
attacks on the credentials, we define the following set of
credential registration requirements.

• Unique credential set. For every legitimate Android
application bundle, there is exactly one credential γ ∈
Γ, where Γ is a unique set of credentials.

• Protected credential set. Access to the set Γ (in mem-
ory or on the file system) is restricted to the verifier
process π and the registrar process ρ.

• Hard to regenerate. It is computationally hard to re-
generate an application credential γ ∈ Γ created by
ρ.

• Preventing replay attacks. Eavesdropping and replay-
ing of a credential shall not be possible.

These requirements provide the basis for detecting and
preventing the execution of malicious processes through a
number of operations and properties that we discuss next.

2.4 Authentication properties and operations
The operating system is responsible for using application

credentials to authenticate processes. The rationale behind
our authentication model is determined by the following
Process Authentication (PA) properties:

1. User processes (other than π and ρ) may not create
or modify credentials, or, assign credentials to other
processes and applications.

2. If a process fails to authenticate itself with a valid se-
cure application credential, then the process is poten-
tially malicious.

3. A process may not be authenticated with more than
one credential.

4. A process may not inherit its authentication status
from parent processes or any other process. Sibling
processes are authenticated with a shared application
credential.

5. A Dalvik application process is always a child of the
zygote process. Native processes must either be a
child of an Android system process or a Dalvik ap-
plication process.

The PA properties ensure that processes are bound to proper
application credentials such that a malicious process (under
our attack model in Section 2.2) does not bypass the au-
thentication, or, spoof other legitimate processes.

Operations. Our authentication model has three core op-
erations: credential registration, process authentication, and
runtime detection.

1. Credential registration. The user of a mobile device re-
quests the registration of an application bundle, which
is performed by the registrar process ρ. A credential is
valid if (i) it is generated according to the credential
registration requirements, (ii) it is registered in an ap-
plication bundle, and (iii) it is recorded in a credential
database maintained by the registrar.

2. Process authentication. In this operation, the operat-
ing system exchanges an authentication request and
response with a verifier process π (defined earlier) to
validate the authenticity of a process and bind it to a
registered credential. Process authentication fails if (i)
the process has no application credential, or, (ii) the
process possesses an invalid credential.

3. Runtime detection. A runtime detection operation
monitors process creations and enforces the manda-
tory authentication on all processes. A process that
fails in process authentication is flagged as malicious
and is denied execution rights.

These operations ensure proper authentication of all pro-
cesses and detection of unauthorized ones. In the following
section, we present the design of DroidBarrier that imple-
ments these operations in the Android operating system.

Our model may complement (i) a classification procedure
(for example, [8, 12, 14]) that precede the credential regis-
tration operation, which provides the user more information
about the application, and, (ii) a sophisticated access con-
trol system (such as Android’s SELinux [30]) that uses our
strong authentication and detection to properly identify ap-
plication process and enforce fine-grained access rights based
on the specified policies.

3. SYSTEM DETAILS
We design DroidBarrier to realize our authentication

model. DroidBarrier implements the operations described
in Section 2.4. In the following sections, we present the core
components of DroidBarrier and discuss some of the alter-
native design approaches.

3.1 Credential Registration and Protection
To perform the registration of credentials, DroidBarrier

includes a component referred to as the credential registrar
(also referred to as the registrar in this paper). As depicted
in Figure 3.1, credential registrar’s task is to generate cre-
dentials for applications that the user designates as legiti-
mate.

Establishing the trustworthiness of applications is an im-
portant procedure that can be executed before registering an



application with a valid credential. To establish this trust-
worthiness, there exists a number of classification techniques
using static analysis [12, 14, 17], dynamic analysis [33] of the
application, or based on experts’ knowledge. In this work,
we do not explicitly address this problem.

Credential generation. The registrar generates a creden-
tial that is computationally hard to guess. Among many
ways to generate a credential, the registrar can use a strong
pseudo random number generator.

There are two alternative approaches to our authentica-
tion mechanism based on secret credentials. First, regis-
tering a public checksum (e.g., a hash of application’s class
file) of an application bundle, and, recomputing the check-
sum at runtime to establish the authenticity and integrity of
the application. Our approach is to use a secret credential,
which eliminates the need for recomputing the checksum.
Although by checking the checksum one can determine if
the application bundle’s integrity was violated, we choose
to protect application bundles (as described below) for ver-
ifying and preserving their integrity and disabling possible
denial of service. The second alternative approach is to use
developer signatures to establish trust. In fact, Android uses
developer signatures, but without an actual verification of
the signature. Our design eliminates the need for third party
certifications and verifications of public keys yet delivers the
required level of trust.

To correctly establish the authenticity of an application,
the registrar uses a two-way registration method. First, the
registrar generates and stores a credential γ in A’s bundle,
forming a new application bundle A∗. We refer to an appli-
cation bundle with an embedded credential, as a protected
application bundle. This design choice is important to bind
processes to specific executables in our runtime detection
system, and, to protect the credential γ from attacks (de-
scribed below). Second, the registrar stores a copy of γ in
a SAC database. The SAC database implements the unique
set Γ, which is the set of reference for validating any creden-
tial. Maintaining a copy of γ in the SAC database prevents
forgery and replay attacks on the credentials. Note that an
application’s credential γ is invalidated if γ is removed from
Γ and if the application is reinstalled or deleted.

Credential protection. To fulfill the specification of cre-
dentials (Section 2.3) and the PA properties (Section 2.4),
our design must fully protect the credentials generated by
the registrar to preserve their integrity, without relying on
file system permissions. Our approach to this problem is
to enforce access restrictions on the protected application
bundles and the SAC database. To maintain integrity and
confidentiality, we disable any process, other than the ver-
ifier process and the registrar, from read/write access to
protected application bundles and the SAC database. We
enforce this protection using DroidBarrier’s kernel-side com-
ponents by intercepting all open system calls and preventing
unauthorized access to the SAC database (Section 4).

3.2 Runtime System
DroidBarrier includes a process monitor (Figure 3.1) to

track the creation of processes by the Android’s runtime.
The process monitor relies on the authentication decision
by DroidBarrier’s authenticator. To maintain compatibil-
ity, we design these components as part of the Linux kernel
without modifying Android’s runtime. Our design strategy
is to detect process creations, bind them to specific appli-

cation bundles, and authenticate the processes according to
registered credentials.

Process Monitoring and Runtime detection. The process
monitor’s policy is to regard every new process as unautho-
rized until it is authenticated. The detection strategy of
the process monitor is to check the authentication status of
applications at the time of creation. A process’s status is
either authenticated or unauthenticated.

The technical challenge in the design of DroidBarrier’s
runtime system is the semantic gap between the kernel and
Dalvik virtual machine, which runs Android applications.
Android’s runtime system process, zygote, forks a new pro-
cess when the user wants to run an application. At this
point, it is not clear to the kernel which application is loaded
in the newly created process. To reconstruct the seman-
tics, in addition to monitoring process creations, the process
monitor keeps track of file accesses by zygote to bind the
loaded class file of the application to the newly forked pro-
cess. When the newly forked process is bound to a Dalvik
class file, the process monitor’s runtime detection is com-
plete and the process’s identifier (PID) is sent for authenti-
cator to proceed with the authentication.

Process authentication. DroidBarrier needs a reliable
mechanism for authentication to prevent stealing credentials
and spoofing legitimate processes. Android requires applica-
tions to be signed by developers [4]. However, as discussed
earlier, developer signatures do not provide any reliable as-
surance about the authenticity of applications [4, 32]. We
follow a design choice to mediate the authentication between
DroidBarrier and user applications. Using our authentica-
tion mediation strategy, DroidBarrier performs the process
authentication operation in three stages:

1. Kernel-side checking. As shown in Figure 3.1, a kernel-
side component, authenticator (denote as AT ), re-
ceives an authentication request from process monitor
(denote as PM) for a process P . AT maintains a sta-
tus list L, which records the authentication status for
each process, authenticated, or, unauthenticated. If P ’s
status is unauthenticated, AT sends an authentication
verification request to the verifier process π. The for-
mat of the request is (P.PID, P.path), where P.PID
is P ’s process ID and P.path is the file path for the
Dalvik class file that created P .

2. Verification of credentials. π loads the credential
c from the protected application bundle on P.path
and the corresponding credential c′ from the SAC
database. If c = c′, then π sends a success response
message back to AT .

3. Status update. When AT receives the response mes-
sage from π, AT updates P ’s authentication status in
L, accordingly.

3.3 Security Analysis
Security guarantees. DroidBarrier guarantees that all

processes are authenticated. This property ensures that
stealthy applications that were installed without the user’s
consent are detected. Independent remote or physical at-
tacks described in Section 2.2 are detected as soon as a
process with no valid credential is created. For example,
when a malicious application tries to gain root privileges, it
must create independent processes to run exploits through
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must obtain valid secure application credentials to ensure normal execution of their processes. An unauthen-
ticated process is considered potentially malicious. Depending on system policies, DroidBarrier may kill a
process or limit its activities.

shell scripts or native code. DroidBarrier requires manda-
tory authentication and denies access to malicious processes
that fail to authenticate. As discussed in Section 5.1, all the
instances of Android malware tested under DroidBarrier,
failed to continue normal execution.

Security of credentials. To secure application credentials,
we study various attacks that can occur on the credentials
and provide solutions accordingly. An important attack on
DroidBarrier is to steal or corrupt application credentials.
Attacks on credentials can occur in a number of ways:

• An attacker may include a credential in a malware’s
application bundle according to our credential spec-
ifications. This attack fails since the fake credential
created by malware is not registered with the SAC
database.

• Under our attack model (Section 2.2), an attacker may
attempt to violate confidentiality by stealing the cre-
dentials or violate integrity by corrupting them. We
protect credentials by disabling read/write access to
protected application bundles on the disk (Section 3.1).
Read and write accesses on protected application bun-
dles are only permitted for the zygote process to al-
low loading the class files. Note that readability con-
straints on applications do not prevent loading class
files. That is, we especially allow zygote to load class
files, after authenticating zygote.

• We prevent memory attacks on credentials by mediat-
ing the authentication (Section 3.2). Thus, credentials
are never stored in application heaps or stacks at run-
time.

Protecting DroidBarrier code and data. DroidBarrier’s
process monitor and authenticator execute in kernel mode.
This guarantees the isolation of process monitor and authen-
ticator data from user space attacks under the reasonable
assumption of a trusted Linux kernel (Section 2.2).

The process monitor and the authenticator communicate
directly on shared data structures. The authenticator and
the verifier process communicate through a shared memory
that is managed by the kernel. This shared memory is not

accessible by any other process and may not be read from or
written to. This protection is implemented in DroidBarrier’s
kernel-side components without relying on Linux kernel’s
permission system. The verifier component is protected in
two ways. The executable code is kept in a protected appli-
cation bundle with an additional restriction of disallowing
the Android application manager to remove or reinstall it.
At runtime, the verifier process is automatically created by
DroidBarrier’s kernel-side components when the zygote pro-
cess is created. Further execution of the verifier application
is denied.

Limitations of DroidBarrier. DroidBarrier specifically
targets processes that are created by malicious applications.
This is a critical category of attacks that is used by modern
Android malware [34]. However, embedded attacks that run
entirely within the boundaries of a legitimate process cannot
be detected by our current mechanism. In general, any mali-
cious application that possesses valid credentials (by hijack-
ing legitimate applications, or granted by mistake) bypasses
our security guarantees.

DroidBarrier’s code and data may be subject to kernel-
based attacks either by rootkits or malicious kernel mod-
ules. In principle, rootkit attacks (such as return-oriented
rootkits [19] and system call obfuscation [31]) can cause
kernel integrity and confidentiality violations. Although
DroidBarrier is not designed to specially prevent rootk-
its, assuming that the kernel is initially free of malicious
code, DroidBarrier prevents further malicious code execu-
tions. For instance, modern rootkits need to use return-to-
user attacks [21] and run the code stealthily in user space.
DroidBarrier detects this type of attack when the prerequi-
site of a successful attack is to first run a user space task
that can receive the execution, for example, from a NULL

dereferencing in the kernel. To protect DroidBarrier from
malicious kernel modules, DroidBarrier can be extended to
authenticate kernel modules at the time of loading. This
extension is left for a future work.

4. IMPLEMENTATION
We describe a prototype of DroidBarrier implemented in C
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using Android’s native APIs. Our implementation involves
an extension to the Linux kernel for process monitor and
authenticator (described in Section 3.2). We use Android
Honeycomb 3.2 with the Linux kernel version 2.6.36.4 for
our implementation platform. Below, we present a highlight
of our implementation features.

1. Kernel modification is minimal and hardware indepen-
dent.

2. DroidBarrier does not modify the original semantics of
process management and creation functions in Linux.

3. Our prototype is compatible with Android’s runtime,
and all other Android operating system components.

In the following we first describe the implementation de-
tails of credential registrar followed by process monitor, au-
thenticator, and verifier.

Credential registrar. Figure 4.1 shows the registration pro-
cess. We implemented a credential registrar that installs ap-
plication credentials for an Android application bundle. The
registrar uses a random number generation function to gen-
erate a credential and labels the application bundle (with the
apk extension) with the newly created credential. The regis-
trar also records the new credential in a sequential database
of keys and application names for reference at authentica-
tion time. Our labeling of the apk bundle does not alter the
functionality of the application in any way. The label only
includes an additional header and the credential in a format
that DroidBarrier can recognize.

Credential protection. We protect credentials (Section 3.1)
by implementing a light-weight access control system in the
kernel. As depicted in Figure 4.2, we place checkpoints in
the beginning of do_sys_open, which enables us to inter-
cept all open system calls. Before returning a file descriptor
fd to the requesting process, we check for two conditions.
First, we check if the requested file path is a protected ap-
plication bundle, by reconstructing the full file path from
the process’s current directory. Then, we verify if the re-
quested file path is an executable. If the condition is true,
we check if the requesting process is the registrar, the cre-
dential verifier or zygote. According to our policies (Sec-
tion 2.4), DroidBarrier denies access to executables for all
other processes. Second, we check the file path against our
credential database. For the credential database, we only
return an fd, if the calling process is either the credential
verifier or the registrar.

Process monitor. We implement the process monitor (Fig-
ure 4) by inserting check points in specific kernel functions.
To maintain performance, we avoid using existing Linux
APIs to trace kernel functions (such as kprobe or ptrace).
To monitor the creation of processes by the Android’s run-
time, we insert check points in do_fork, for Android’s Dalvik
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Figure 4.2: DroidBarrier protects credentials by
monitoring open system calls and checking for per-
missions.

zygote forks a 
new process

Process monitor 
records pid of the new 
process and waits for a 

call to open

zygote’s new 
child calls open 
to load class file

Authenticator 
sends pid,path 

to authenticator 

Time

Verifier checks the credential 
on path and sac.db

and responds to Authenticator

Authenticator 
update’s pid’s 
authentication 

status

protected
shared 

memory

Figure 4.3: Monitoring of a process starts at the
time zygote forks the process. Process monitor
prepares an authentication pool for authenticator,
which sends verification requests to the verifier pro-
cess. The interactions above the time line are in
user space.

applications, and do_execve, for native applications loaded
directly by the kernel. The zygote process calls fork() to
create a new process and load a Dalvik class in it. We record
the generated pid in do_fork and track zygote’s subsequent
system calls so that we bind the new pid to its application
bundle.

DroidBarrier tracks the loading of Dalvik class files
through our check point in the do_sys_open function. When
the process pid (that must be the child of zygote) loads
a class file from the file system, the authentication oper-
ation can proceed to verify pid’s credentials. Since the
authentication is asynchronous and waits for the open sys-
tem call, DroidBarrier maintains a dynamic pool of await-
ing authentication processes (an array requests of type
struct auth_request) to perform the authentication.

Authenticator and verifier. The authenticator creates and
manages a shared memory with the verifier process in user
space. The shared memory is not visible to any process. We
implement this restriction in the check point in do_sys_open

function. DroidBarrier checks for permissions before the
open system call returns a file descriptor. The permission
check maintains a list of permissions for specific file descrip-
tors. Access to the shared memory file descriptor is denied
to all processes except the verifier (for which we record the
pid). The authenticator continuously checks the requests

pool for fresh authentication requests. Authenticator sends
each request in a special string format to the verifier using a
first come first served schedule. Once the verifier checks the
credentials for the process it sends a response back on the
same shared memory to the authenticator. The authentica-



tor informs the process monitor about completed authenti-
cation via updating the status of the request in requests.

The verifier’s task is to verify the credentials on a file
path received from the authenticator. The verifier opens
the corresponding file path and searches for credentials. If
one found, the verifier reads the credential and checks if the
credential exists in the SAC database. The SAC database
is a sequential file on the disk containing application names,
file paths, and credentials. If the credential matches the
process file path, the verifier creates a success message and
sends it to the authenticator.

5. EVALUATION
We evaluate DroidBarrier by testing its detection capa-

bilities against Android malware samples. Also, we present
experiments for evaluating the performance of DroidBarrier.

5.1 Detection of Malicious Applications
According to Android’s application model, every applica-

tion bundle must run in at least one process independent
of other applications. Thus, to detect malicious Android
applications, we design DroidBarrier to detect malicious ap-
plications based on their process creations. According to the
analysis performed in [34], about 36.7% of the applications
(in a collection of 1260 malware instances) contained embed-
ded privilege escalation exploits that execute through hidden
shell scripts requiring their own independent processes.

We analyzed three chosen sets of Android malware
DroidKungFu, BaseBridge, and AnserverBot. These mal-
ware (provided by Android genome project1) have 96, 122,
and 187 variants, respectively. Our chosen malware cate-
gories use sophisticated social engineering, root vulnerability
exploitation, and financial attacks, found in many other sim-
ilar malware sets [34]. Nevertheless, our malware analysis is
not limited to the chosen sets and is applicable to all malware
with privilege escalation attacks as described in [34]. The
three analyzed malicious applications share a core function-
ality that results in their detection by DroidBarrier. That
is, they try to gain escalated privileges by running an exploit
and subsequently calling the su utility. The su utility is not
included in Android by default, but the malicious applica-
tion can install it after gaining installation privileges that
bypass user’s permissions.

DroidBarrier successfully detected all the samples that
we tested from these three sets. All the samples tried to
run su, which resulted in processes that failed to authen-
ticate. DroidKungFu tried to run other unknown executa-
bles that were also immediately detected at the time of pro-
cess creation. Thus, based on our results, we conclude that
DroidBarrier can detect a malicious application that

• is installed through drive by download,

• uses privilege escalation attacks, or

• is physically ported to the device.

While DroidBarrier detects critical malicious applications,
it cannot detect a malicious application if

• the user grants credentials to it, or

• it can exploit existing legitimate applications to
achieve its goals.

1http://www.malgenomeproject.org/

We observed that the malicious applications that we
tested stopped working, and sometimes their processes were
automatically killed due to malfunctioning as a result of
denying access to their required services by DroidBarrier.

5.2 Performance Evaluation
We evaluate the performance of our implementation pro-

totype described in Section 4. Our performance evaluation
investigates the following:

1. DroidBarrier performs permission checks prior to cre-
ating a file descriptor in the open system call. How do
these permission checks affect the I/O performance in
the kernel?

2. What is the performance penalty on process creations?

3. How does the I/O performance in Dalvik applications
are affected by DroidBarrier?

In the rest of this section, we describe our experimen-
tal setup followed by three sets of experiments for I/O and
process creation. Our results show efficient performance of
DroidBarrier with low extra overhead in I/O performance,
and, negligible performance penalty in process creation.

Experimental setup. Our evaluation focuses on the effect
of DroidBarrier on the performance of the Linux kernel in
Android. We run all the experiments on a Samsung Galaxy
Tab 10 (with model number P7510) running Android Hon-
eycomb 3.2 with the Linux kernel version 2.6.36.4. For our
evaluations, we port the benchmarking suites lmbench2 and
UnixBench3 to Android.

For our evaluations we needed a benchmarking suite that
can accurately measure I/O and process creation. There are
existing suites such as lmbench4 and UnixBench5 that con-
veniently run on Linux distributions for x86 machines. Per
our research, these suites have not been ported to embedded
Linux running on the ARM architecture. Thus, we modi-
fied some of the existing code in lmbench and UnixBench
for compatibility with the ARM Linux.

When running the modified kernel with DroidBarrier, we
periodically simulate the authentication of processes as if
a user is consistently launching new applications. When
performing experiments, there was about a total of 130–150
running Linux processes.

I/O performance. I/O performance experiments show a
consistently efficient performance of DroidBarrier with the
performance penalty not exceeding 13%. For measuring I/O
performance, we evaluate the performance of the I/O opera-
tions write, read, open, and close system calls as well as the
performance of piping. Note that for protecting secure appli-
cation credentials DroidBarrier only includes a monitoring
on the open system call. For each measurement, the I/O op-
eration is repeated 10000 times continuously. We measure
the time taken to perform the whole 10000 calls to the I/O
function. The experiments on read and write include calls
to open and close. For open and close, in each iteration we
call open followed by a close. We performed 250 runs of each
loop to collect an average performance value.

2http://www.bitmover.com/lmbench/
3http://code.google.com/p/byte-unixbench/
4http://www.bitmover.com/lmbench/
5http://code.google.com/p/byte-unixbench/
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Figure 5.1: (a) Four I/O operations: write, read,
open, and close. Maximum penalty is 12.92. (b)
Four I/O operations: write, read, open, and close
for Dalvik applications. Maximum penalty is 6.26.

In the results of our experiments (depicted in Figure 5.2),
we have an average maximum of 12.92% performance
penalty for the read calls, an average minimum of 3.76%
performance penalty for open/close, and for write calls there
is an average of 6.01%.

To examine the performance of Dalvik applications under
DroidBarrier, we conducted an I/O experiment by making
file writes, reads, open and close using the BufferedWriter

and BufferedReader. The open and close calls involve
opening a file using FileWriter, which is used to create
a BufferedWriter and we close the BufferedWriter subse-
quently. We developed an application to perform 1000 it-
erations of each I/O operation (we call open and close calls
together in one iteration). The results of Figure 5.2 shows
the average performance for 200 runs of all experiments.

Our experiments show a maximum penalty of 6.26% in
BufferedReader, an average performance penalty of 1.48%
in BufferedWriter, and a minimum performance penalty of
0.927% when opening a file using FileWriter.

Process creation performance. We measure the fork sys-
tem call in loops of 1000 iterations. In each iteration we fork
a child, and, a child exits immediately, and, we perform a
total of 100 runs of the experiments. Android heavily uses
fork for process creations. Since DroidBarrier performs the
authentication asynchronously, we do not see major perfor-
mance downgrade for forking a process. The average perfor-
mance penalty is 0.041% (depicted in Figure 5.2), which is
insignificant.

6. RELATED WORK
Quire is a cryptographic solution that annotates inter-

process communications (IPC) in Android to provide prove-
nance assurance to the receivers of the IPC messages [11].
Quire provides authentication only at the IPC and remote
procedure call (RPC) levels. Quire’s strategy is to authen-
ticate every IPC and RPC and enable the applications to
use the provenance information provided by Quire. Our au-

2.3675 2.368 2.3685 2.369 2.3695

Fork (DroidBarrier) Fork (Stock)

Average execution time in seconds

Figure 5.2: Performance of fork system call evalu-
ated in loops of 1000 iterations. DroidBarrier asyn-
chronously authenticates processes to avoid major
delays at the time of creating processes. It has an
insignificant performance penalty of 0.041% in pro-
cess creation.

thentication model in DroidBarrier uses a different strategy.
First, we authenticate a Linux process as one unit. This
authentication can provide provenance at any lower level
such as function calls, IPCs, and RPCs. Second, under
DroidBarrier, only registered applications can successfully
authenticate, and as a result, unauthenticated processes are
considered potentially malicious.

A2 [2], uses a challenge-response protocol to authenticate
applications. A2 [2] is designed to work with Linux processes
created for native C applications. DroidBarrier authenti-
cates Android’s interpreted applications by reconstructing
the semantics between the Linux kernel and Android’s run-
time (Section 3.2). DroidBarrier substantially improves and
advances the techniques discussed in A2 by (i) an authenti-
cation model that specifically addresses the challenges for
authenticating Dalvik applications, (ii) an authentication
mediation strategy that reconstructs the semantic gap be-
tween the Dalvik runtime and the kernel, and (iii) a runtime
system that monitors Android’s zygote for process creation
and enforcing authentication.

VMWare Mobile Virtualization Platform (MVP) [3] is a
type 2 hypervisor and is capable of isolating restricted and
normal execution environments. Bare Metal Hypervisor [18]
runs security sensitive applications in trusted and isolated
environments. Also, Cells [9] runs multiple virtual phones
using a shared underlying physical phone to provide isola-
tion. Other systems such as TrustDroid [6] isolate applica-
tions in isolated logical domains. In DroidBarrier, we do
not use virtualization to provide isolation at runtime. This
helps in achieving better compatibility.

Mandatory access control (MAC) systems complement
DroidBarrier to provide fine-grained authorization. An-
droid’s SELinux [30], for example, can benefit from
DroidBarrier’s strong authentication guarantees. Moreover,
TOMOYO Linux implements a MAC system based on be-
havioral analysis [24]. Paranoid [26] is a system that takes
a novel direction by delivering a cloud-based security solu-
tion for Android. User-driven access control [28] is another
promising direction that uses the principle of least privileges
and incorporates the user’s decision in granting permissions.

Static analysis can also complement DroidBarrier by pro-
viding a classification of applications at registration time.
Kirin [14] uses security requirements engineering techniques
for classifying malicious applications. RiskRanker [17] an-
alyzes Android applications for finding zero-day Android
malware. CHEX [22] is another tool capable of detecting



component hijacking attacks in poorly engineered Android
applications. Barrera et al. [5] present a methodology for
investigating permission usage in Android applications. Fi-
nally, general static analysis techniques such as [12] can also
be used to provide information on installing applications.

7. CONCLUSIONS
We presented a general model for providing high assur-

ance authentication for application processes running on an
Android-enabled device. We achieve the high assurance by
developing an authentication model that uses secure appli-
cation credentials, maintained and protected by our runtime
system, to authenticate processes and bind their identity to
legitimate applications installed on the device. Our authen-
tication approach guarantees protecting the system from ex-
ecution of malicious applications that may exploit the many
system and application vulnerabilities to be installed on the
device. Our future work will focus on authenticating inter-
process communications and authenticating access to appli-
cations’ assets.
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