Security Evaluation by Arrogance: Saving Time and
Money

Hussain M. J. Almohri
Department of Computer Science
University of Virginia
almohri @ieee.org

Abstract—Software startups can be subject to extreme money
and time constraints while hoping for delivering reliable software.
In a harsh startup environment, software may face quality
downgrade either by improper process management or inca-
pable human resources. Among the many, security is a fragile
software quality characteristic responsible for severe negative
consequences such as jeopardizing a startup’s brand among
early adapters. Addressing security evaluation, we report our
experience in developing a startup’s internal software engineering
process that includes a continuous security evaluation cycle at
the heart of the process and leverages arrogance in software
engineering—the tendency to break other team members’ code.
The valuable outcome was that enforcing security evaluation, as a
concrete process activity, came with no cost. That is, we reutilized
our resources by changing the flow of the engineering process
while capitalizing on arrogance as a motivating stimulus yielding
a cost-effective vulnerability assessment for each software release.
We describe our process, provide the case for the benefit of
arrogant engineers, and conclude with a report of incidents in
which arrogance came to our rescue.

Keywords-Security management, Risk analysis, Business pro-
cess management, Process modeling

I. INTRODUCTION

In 2012, we started a mobile payments startup (Next
Payments') far away from Silicon Valley, CA. Our startup’s
goal was to develop a robust and scalable mobile payment
system. At the time, a number of startup companies (such
as Square and LevelUp) were gaining tremendous attention
and the idea of mobile payments was promising. We started
with a relatively small team of engineers, business developers,
and social media specialists (a total of 11 team members)
focusing on coding, business development, and marketing. A
group of four engineers, including a lead senior engineer,
developed two platform client applications, a large backend
set of RESTful API micro services for client applications,
and a log and monitoring component for auditing transactions.
The engineers were focused on single platforms with specific
task allocations. The engineering team consistently met to
brainstorm and exchange ideas and resolve possible problems.

Being remote to Silicon Valley without access to vast
amounts of funding available to startups, we were limited
to a seed fund of $300,000 and a tight delivery deadline.
We could not afford hiring engineers with special skills or

Uhttps://nextkw.com

Sayed A. Almohri
Columbia Business School
Columbia University
sayed.almohri @columbia.edu

dedicate engineers to specific quality testings. Our engineers
were mostly recent university graduates that had to translate
requirements to code and perform testing on their own. Thus,
during the early stages of our development, we were faced
with a serious problem: we had a very limited understanding
of our current state of security. We were not confident whether
a release of the software was secure against powerful client
or server-side attacks. While we had proper security policies
and specifications for our transactions, the uncertainty about
transactions correctness was a growing problem. There was an
inevitable need for an efficient process to control the software
security quality while maintaining efficient use of our financial
resources. In fact, we wondered whether a security evaluation
with near zero cost was possible.

Unfortunately, the research literature has a narrow view
of methodologies and guidelines for security evaluation of
software developed in startup environments. Also, for a startup
teams, searching, learning, and correctly applying a theo-
retical process such as Microsoft’s Security Development
Lifecycle [5] may not be feasible. Thus, to develop a clear
understanding of the security of our system, our ideas was to
developed an internal security-centric process that is simple
and fluid and has a security evaluation phase ensuring vigorous
system security testing before every release. This security
evaluation phase relied on the passion and desire of arrogant
team members to lead aggressive security evaluations with the
intention to break code written by others. Our hypothesis was
that an arrogant engineer with a technically negative attitude
towards colleagues can be an asset instead of a burden. That
is, the engineer’s desire to find vulnerability in the release,
perhaps to prove a point against others, has a valuable and
positive outcome. Thus, our process reutilizes the capabilities
of existing team members by leveraging human factors (largely
supported by previous studies [4]) with minimum training and
adaptation efforts.

This paper will provide the details of our internal process
that uncovered a number of serious vulnerabilities either before
the final commit of the software or early after its release into
production. This paper does not provide the architecture of
our mobile payment system or an experimental evaluation of
our internal process. Instead, we’ll discuss the motivation and
the design of the process and a number of cases in which it
proved financially efficient as well as effective in preventing

vulnerabilities.

II. THE SECURITY-CENTRIC PROCESS

To develop the system in a timely manner, Agile processes,
especially Extreme Programming (XP) and Scrum, were the
strongest candidates for us partly because they require less
formal documentation and emphasize more on effectiveness
of teamwork. That said, as a study by Reifer finds out [6], a
number of Agile-related practices in participating companies
were merely new ways to manage classical software projects.
For instance, customer collaboration, product demos, and full
stake-holder participation were among the list of effective
Agile practices that contributed to improved results in quality,
delivery time, and some minimal cost reduction.

In terms of security, Scrum and XP do not provide spe-
cific recommendations on handling security-related evaluation.
Although evaluation, testing, verification and validation are
integral parts of any software engineering process, there are
limited guidelines on effective security evaluation especially in
small startup teams. We needed to rethink and extend an Agile
process to fit our security evaluation goals. With a very limited
budget of nearly $300,000 and a long list of features for the
minimum viable product, we could not afford fancy process
requirements that required extra time and effort. However, as
we discuss in Section II-B, we reutilized our human resources
relying on their passion to lead thorough security evaluation
at the end of every release of the system.

A. The Early Stages Process

We started developing the first four releases of our system
with a simple process that was inspired by Extreme Pro-
gramming and included planning and feedback loops. After
each release, once the business team compiled the feedback
and concluded that changes were needed or new features had
to be added, a joint meeting would plan the next release.
The software engineering team was responsible for developing
clear tasks that were assigned to individual team members.

In the first year of our startup, we noticed a lack of a
comprehensive understanding of the current state of security
in the system. None of our engineers was confident whether
our system releases were secure, at minimum, against vulnera-
bilities such as denial of service, memory corruption, plaintext
storage of data, and other vulnerabilities that will have result
violate our system’s integrity, confidentiality, and availability.
The intensity of the development, the rapid changes in the
requirements, and the pressure on the team to spend the
minimum time for developing a component, were among the
reasons that delayed a thorough security testing of both the
applications and the backend services. Further, there was a
lack of interest in security in most other software engineers.
This lack of interest in them was a potential problem that could
leave severe vulnerabilities in the code.

Thus, we started further enhancing our process to include
security evaluation steps. The high-level requirements for the
new process were as follows.

1) The enhanced process should continue to be simple
and should not require significant training for the team
members.

2) The enhanced process should ensure the final product
was tested against a set of fundamental security vul-
nerabilities and should include security features that,
given the current technology, guaranteed reliability of
transactions.

3) The enhanced process should not require additional
dedicated team members.

While the requirements were clear for enhancing the soft-
ware engineering process, we also needed a mechanism to
produce releases with an acceptable level of security, which
was defined as the extent of our knowledge and research of
attacks and defenses related to our platforms. Thus, we decided
to utilize human factors to accomplish our goal. Considering
the behavior and attitude of our engineers, we found a rather
undesirable personality: one of our engineers enjoyed harshly
criticizing others’ code and their design decisions. On the
bright side, however, he had interests in software and network
security and would constantly research topics in this area.

We realized this arrogance towards other engineers as an
opportunity. The hypothesis was that given the aggressive
and critical behavior of the engineer, testing others’ code for
security would be a natural stimuli for intrinsic motivation.
Although the arrogant engineer’s experience in software de-
velopment did not exceed three years of prior work, compared
to other team members, he had consistently showed personal
desire in understanding security attacks and how software
often fails in maintaining minimum security. The arrogant
engineer could not be characterized as a security expert.
However, we can summarize his belief of security in that

1) he did not trust anyone’s code for having minimum
security even if the software was a more experienced
engineer’s work, and

2) he was never convinced that accepted standards, such as
transport layer security (TLS) were sufficient for ensur-
ing integrity of data reaching the backend servers. For
example, he always preferred an end-to-end encryption
layer on top of TLS.

The arrogant engineer’s belief constituted a useful ground
for utilizing his beliefs and personal desires. Based on the
hypothesis that his attitude and beliefs will result in finding
security flaws in our work, we extended our software engi-
neering process by rearranging our resources to realize the
team’s potential to deliver secure software. The result was a
Scrum-inspired process (Figure 1) which emphasized on the
review stage of a sprint. Breaking down our hypothesis, our
new process had to test the following ideas.

1) A personal desire for proving a security failure in an
engineer with a basic understanding of security will be
an intrinsic stimuli for the engineer. This stimuli will
motivate the engineer for effective research in security
advancing his/her capabilities.

2) Adapting a central role of security without the need for

hiring new engineers will assist in maintaining a low
burn-rate (the negative cash-flow of a company) of our
seed capital.

As we will describe in Section II-C, we could indeed
provide enough motivation for an arrogant engineer to both
pursue state-of-the-art security practice and also to attack
others code. In fact, we split the security evaluation task
between an arrogant engineer and an external ethical attacker
to compare their results. As suggested in the results of Section
I, the arrogant in engineer was more successful in terms of
finding the higher number of vulnerabilities in the system.

Specifies
————>
l Provides input
Assigns
[N
l Delivers code

Implements

Report | vulnerabilities
Updates
Assigns
[—————

Consults

<4
)
2
3]
©
T
]
=
=
=
7]

Commits

Fig. 1. An overall flow of our software engineering process with a central
focus on security engineering. This flow demonstrates a single release lifecycle
that starts with a joint meeting of the teams and ends after a thorough
security testing. Purple boxes represent actors, arcs represent the direction
of interaction, arc labels represent actions, green boxes represent artifacts,
the orange box represents data, and dotted arcs represent influence. The last
action is on the red arc.

B. Characteristics of the Security-Centric Process

In Figure 1, we demonstrate the main stakeholders, the arti-
facts, and the flow of tasks in the security-centric process. The
light purple boxes represent the main stakeholders, the green
boxes represent the artifacts, the dark purple box represents
external ethical attackers recruited for security testing, and the
orange box represents data. The arcs represent the direction of
interaction and the arc labels represent actions.

The security-centric process receives input from three
sources: the business team as the primary provider of sys-
tem requirements, the engineering team, and the security
coordinator, with the latter two influencing the requirements
mainly by introducing technical changes to the main business
requirements. Only the security coordinator commits the final
release after all the necessary security tests pass. In our case
the security coordinator was the senior engineer who was in
charge of the engineering team.

The process includes a release lifecycle (similar to a sprint
in Scrum) that starts with a joint meeting of engineering and

business teams. In the joint meeting, the teams (which are
the main stakeholders) discuss, determine, and agree on the
requirements for the current release lifecycle. The engineer-
ing team prepares a rough draft of the requirements during
the meeting. In the hours following the joint meeting, the
engineering team translates the requirements into tasks that
are posted on an online collaboration application, in our case
Redbooth [2]. Redbooth played a central role in the delivery
of tasks as it featured automated reminders and deadline
notifications.

As components were developed and passed initial tests,
they were delivered to the security coordinator who would in
turn (i) hire external ethical hackers and (ii) specify security
tests and properties for the arrogant engineer, which we will
refer to as our security test engineer. Recall that our main
hypothesis was that our security test engineer had an intrinsic
motivation to break others’ code. To communicate testing
goals to the security test engineer, the security coordinator
updates the security repository which includes the desired
security properties and in some cases a specification of the
test. For instance, when adding a new publicly accessible
server to our cluster, we would ask our external ethical hackers
to attempt an intrusion attack and report the results. The
security test engineer, however, mostly focused on the code
developed by other engineers. A security test specification
example was to test a number of SSL implementations in
our client applications, which eventually unveiled serious flaws
(discussed in Section III).

When external ethical hackers and the security test engineer
submitted their reports to the security coordinator, the engi-
neering team would meet to discuss and plan to remedy the
vulnerabilities. When all the fixes in the code, policies, and
system parameters were discussed, only the security coordi-
nator had the permission to commit code or approve a release
by engineers. As the security coordinator was responsible
for the final release, our process guaranteed that at least the
specification in the security repository was evaluated.

In summary, a complete release lifecycle must go through
the following steps.

1) A joint meeting of business and engineering team to
determine and agree upon the requirements for the
release.

2) The engineering team prepares a draft of requirements
and translate the requirements into tasks that are posted
on an online collaboration system.

3) The engineers start coding and delivering components
to the security coordinator.

4) The security coordinator dispatches security tasks to
external ethical hackers and the security test engineer.

5) The security coordinator receives a report of potential
vulnerabilities in the draft release and calls for a meeting
with the engineering team.

6) The engineering team decides on a plan to remedy
the vulnerabilities and immediately starts improving the
release.

7) The security coordinator constantly monitors the im-

provements in the release with the engineering team.

8) The security coordinator commits the release (or ap-
proves a commit) when the release reaches a good
security level.

This process was a natural fit for all the team members.
With small and focused business and engineering team, we
had all the components needed to effectively realize new
features in software while avoiding security pitfalls. As to our
knowledge of security we had a higher level of confidence and
understanding of the state of security in a release compared
to our simplistic earlier extreme programming-based process.
Although, processes such as Microsoft’s security development
lifecycle [5] are beneficial, as a small startup team with tight
resources we could not afford consuming resources for training
and executing these processes.

C. The Case for Arrogant Evaluation

Our engineering team included a single engineer (i.e.,
the security test engineer) which enjoyed breaking the code
written by other engineers. He relentlessly tried to break the
code, mainly in our client applications, even if he had to stay
for long hours. He had a passion to find state-of-the-art attack
techniques and static analysis tools to test the code at the end
of every release. He was willing to perform black box testing
for hours to test the functionality of the release while at work
or out of the office. Thus, we could discover vulnerabilities
without consuming extra resources except for a few occasions
where we hired external ethical hackers. Despite his efforts in
finding vulnerabilities, the security test engineer could balance
between his own tasks and his testing tasks as he was willing
to work for extra hours.

The code written by the security test engineer himself was
mostly tested by himself. This was a limitation of our work as
we could not find the same passion in other team members.
However, with larger teams the possibility of having more
people interested in the task will increase. Also, while this
arrogance might not be immediately a desired quality when
interviewing engineers, we argue that arrogant engineers could
provide this opportunity to thoroughly test the code.

In our experience, the team was small and already included
one arrogant engineer, which responded positively to the
requests for evaluating others’ code. Scaling this experience to
large teams could face challenges. On one extreme, large teams
with a large number of arrogant engineers can potentially
result in costly conflicts that may not improve the security
at all. On the opposite extreme, large teams with no arrogant
engineer will not benefit from our model. Thus, to have a
deterministic model for using security evaluation by arrogance,
we believe team leaders must identify and assign (or even
recruit when one does not exist in the startup) a single arrogant
engineer to each team of reasonable size, which we define as
a team that delivers software releases that are sized to the
capabilities of the arrogant engineer for a timely evaluation.
The exact parameters of security evaluation by arrogance for
large teams requires further investigation that is out of the
scope of this work.

III. RESULTS

Table I presents a number of statistics about our develop-
ment efforts, which will shade a light on a number of cases
where our vigorous security evaluation revealed vulnerabilities
in our system.

Web Services | iOS App | Android App
Lines of code 89K 28K 20K
Human Resources (HR) | 1 1 1
HR cost $50K $60K $60K
Major vulnerabilities 2 3 2
TABLE I

STATISTICS OF OUR DEVELOPMENT EFFORTS FOR A PERIOD OF 24
MONTHS. APPROXIMATELY 15% OF THE CODE WAS DEVELOPED BEFORE
USING THE SECURITY-CENTRIC MODEL IN A PERIOD OF SIX MONTHS. ALL
THE VULNERABILITIES WERE DISCOVERED AFTER WE ADAPTED OUR NEW
PROCESS. OUR SECURITY EVALUATION COST IN FINDING THE MAJOR
VULNERABILITIES WAS NEGLIGIBLE.

Vulnerabilities in SSL. In the first release lifecycle, the
security test engineer used a number of software tools to
perform security testings on the iOS app. His goal was to find
out whether our SSL implementation can be broken. After a
block box test using a proxy software, he pointed out that the
order of calls to NSURLConnection [1] API was flawed.
Our iOS application’s SSL connection could be completely
compromised by a man-in-the-middle that could control the
wireless router. Our Android application, on the other hand,
did not suffer from improper use of SSL. On the server side,
the security test engineer was the first to inform of us the
existence of the Heartbleed vulnerability [3] in the openssl
version on two servers that handled payment transactions.

Authentication policy vulnerabilities. ~An authentication
vulnerability allowed a large number of users to log into
both iOS and Android applications without providing a correct
combination of username and passwords. Our application only
required a username and password, which, due to a simple
bug in the backend code, allowed for wrong credentials to
be accepted. This finding was also due to the efforts of our
security test engineer who did several authentication testing
with every release.

Input validation vulnerability. A web-based static analysis
tool by a third party company reported that one of our micro
services suffered from input an validation vulnerability in
a PHP script. The software did not provide further details
and this report was included as a task for the security test
engineer. After several test, the engineer was unable to find
the vulnerability partly because of the large code base and
the incomplete report that did not specify the location of the
vulnerability.

Intrusion in a database server. The only major vulner-
ability found by external ethical hackers was their ability
to gain access to one of the database servers on Amazon
Web Services. We used the input provided by the hackers to
patch vulnerabilities and update software on the server. We
recruited external ethical hackers only in two more releases
for testing our server configurations. They did not find further

vulnerabilities.

Other cases of minor vulnerabilities in various parts of
our system were discovered during several releases. Due to
lack of proper documentation of those cases, we refrain from
providing further details on those case. While, the major
vulnerabilities were not very frequent, the impact of each
individual vulnerability was high.

IV. CONCLUSIONS

Our experience provides a hint for the possibility of using
human factors and intrinsic motivation of team members to
perform security evaluation within a harsh software startup
environment. While our process may seem simplistic, it did
provide a smooth and flexible platform that accomplished our
goals. An important outcome of our process was the negligible
cost of the security evaluation process which heavily relied
on human factors and reutilized resources already allocated
for other purposes. We do acknowledge that the discovery of
the vulnerabilities in our code could have been the result of
maturity of engineers in general or the increasing size of the
code. While we did observe the passion and the personal desire
to perform security evaluation, the effectiveness of human
factors and intrinsic motivation of our team remembers remain
to be scientifically established.

The problem we faced in executing a rigorous security
evaluation using existing methods was the lack of proper train-
ing, insufficient funds to attend conferences and workshops,
tight delivery schedules, and above all, limited applicability of
generic models in a startup environment. We hope our expe-
rience ignites further development in utilizing and balancing
human factors aiming for efficient and effective enhancement
of software quality in startups.

REFERENCES

[1] Making HTTP and HTTPS requests. https://developer.apple.com/. Ac-
cessed: 2017-01-17.

[2] Redbooth, online team collaboration software, tools. https://redbooth.
com. Accessed: 2017-01-17.

[3] The Heartbleed Bug. http://heartbleed.com/. Accessed: 2017-01-17.

[4] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp. Motivation
in software engineering: A systematic literature review. Information and
Software Technology, 50(910):860 — 878, 2008.

[S] M. Howard and S. Lipner. The security development lifecycle, volume 8.
Microsoft Press Redmond, 2006.

[6] D.J. Reifer. How good are agile methods? IEEE Software, 19(4):16-18,
July 2002.

