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Remote exploitation attacks use software vulnerabilities to penetrate through a network of Internet of
Things (IoT) devices. This work addresses defending against remote exploitation attacks on vulnerable IoT
devices. As an attack mitigation strategy, we assume it is not possible to fix all the vulnerabilities and propose
to diversify the open-source software used to manage IoT devices. Our approach is to deploy dynamic cloud-
based virtual machine proxies for physical IoT devices. Our architecture leverages virtual machine proxies
with diverse software configurations to mitigate vulnerable and static software configurations on physical
devices. We develop an algorithm for selecting new configurations based on network anomaly detection
signals to learn vulnerable software configurations on IoT devices, automatically shifting towards more secure
configurations. Cloud-based proxy machines mediate requests between application clients and vulnerable IoT
devices, facilitating a dynamic diversification system. We report on simulation experiments to evaluate the
dynamic system. Two models of powerful adversaries are introduced and simulated against the diversified
defense strategy. Our experiments show that a dynamically diversified IoT architecture can be invulnerable to
large classes of attacks that would succeed against a static architecture.
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1 INTRODUCTION

The Internet of Things (IoT) represents a network of interconnected and autonomous devices
that interact with each other with little or no user intervention [47]. A typical smart-home IoT
device interacts with the user through application clients, providing simple interfaces for operating
devices [45]. Similar to personal computers and mobile devices, the software stack in IoT devices can
be based on commonly-used operating systems such as Linux [9] or open-source systems such as
Amazon’s FreeRTOS [53]. These systems satisfy the requirements of IoT devices in terms of device
drivers and the usage patterns. Unfortunately, IoT systems can be subject to attacks when using
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outdated software [42] or when a new attack vector emerges. For example, Amazon’s FreeRTOS
was vulnerable to a remote attack exploiting the TCP/IP component [38]. Another example is the
improper boundary check vulnerability found in Contiki-NG, an open-source operating system for
IoT [23]. These and other similar vulnerabilities enable remote exploitation of IoT devices. In some
cases (such as a recent vulnerability in an SDK implementing UPnP and SSDP protocols [24]) a
remote exploitation also allows for arbitrary code execution on the target with root privileges.

This work aims to mitigate remote intrusions that exploit software vulnerabilities in IoT devices.
Our approach is to only allow access to IoT devices through cloud-based virtual machines and
diverse system configurations to protect machines the devices from remote attacks. Previous
works for securing IoT networks have taken several directions. Preventive measures include access
control and program analysis. In particular, leveraging blockchain access control architectures has
been suggested in several previous works (e.g., [1, 7, 13, 25, 28, 32, 35, 54, 56]). Other works (such
as [16-20, 51]) developed program analysis techniques to identify and prevent vulnerabilities in the
development stage. Hardening the security of an IoT network can also benefit from secure runtime
architectures, for example, by installing firewalls [21] or securing the interaction for devices in
an IoT platform [8]. Secure architectures complement preventive measures by actively protecting
the network. Further, learning from data produced by attackers, anomaly detection systems can
aid secure architectures, enhancing the guarantees provided by preventive solutions [3, 29, 61].
Microsoft has introduced a new tool, Microsoft Defender for IoT, which provides behavioral analysis
to defend against unauthorized remote access [50].

Our goal is to provide a preventive solution that produces randomized and diversified device
configuration settings (such as the choice of the operating system) of devices in an IoT network. Our
work is concerned with system software that provide services to the application layer. Vulnerabilities
resulting from interactions of IoT applications [20] are beyond the scope of this work. We present
a diversified IoT architecture that learns configurations that are likely to be more resilient against
attacks. Our architecture restricts access to physical IoT devices through a virtual machine proxy.
Each virtual machine proxy produces logs of network requests (for example, HTTP messages to and
from an application client). The data is sent to an anomaly detection system (such as HAWatcher [29])
to produce potential attack signals (a signal shows if the attack was detected on a machine). Our
architecture uses attack signals to update attack likelihood for the configurations used on virtual
machines. A continuous process solves a mixed-integer optimization problem to assess the current
software configurations and automatically replace vulnerable virtual machines with ones that are
less likely to be the subject of attack.

Our hypothesis is that configuration diversity with randomization can thwart attacks that would
bypass other security measures in virtual machines that control access to IoT devices. When a
vulnerable IoT device is configured to be only accessible through a virtual machine proxy, the
diversified IoT architecture can improve security by diversifying the virtual machine configurations.
Although the concept of diversity (such as [14, 41, 43]) has been previously used to secure software,
this work is the first to propose an online dynamic reconfiguration of the IoT networks by solving
an optimization problem.

The focus of this work is to provide the optimization model and algorithms for selecting device
configuration settings, facilitated by virtual device proxies [3]. There are several challenges for
producing diversified device configurations to secure an IoT network. First, it is difficult to identify
a device setting that plays a significant role in enabling a remote exploitation attack. For example,
in a typical Ubuntu Linux web server, more than fifty system services execute. When detecting
that a camera is stealthily sending pictures to an unauthorized client, we know that the device was
attacked remotely, but we do not know whether the attack was because of an operating system
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failure, a network layer exploit, or a web service vulnerability. Note that a successful compromise
may require a multistage attack that exploits a remote service followed by a local service to escalate
privileges. Dynamically diversifying configurations evolve the security of the network over time
by quarantining and avoiding specific configuration settings (when possible) used in frequently
attacked devices. Thus, the network has the opportunity to learn, at some granularity, that a specific
group of device settings are responsible for a higher attack frequency on the target devices.

Second, the IoT network needs a system to collect data, learn vulnerable configurations, and select
the least vulnerable configurations to be used in device proxies. Selecting a configuration requires
detecting attacks on individual machines and using attack data to determine new configurations.
This work does not address machine learning algorithms for analyzing raw network data and
detecting an attack attempt. Instead, we assume that a machine learning algorithm actively provides
intrusion signals. Previous works such as HAWatcher [29] and the attack resilient architecture [3]
can be used to produce attack signals. The signals are supplied as input to an integer optimization
problem for learning the least vulnerable configurations. We develop the optimization problem and
the system’s constraints and give an algorithm for actively monitoring the system’s attack reports
and applying the necessary configuration changes.

Third, modifying the structure of a device requires designing a system that has remote adminis-
trative privileges on each IoT device. When a reconfiguration is needed, the system must remotely
modify the selected configurations, often requiring a significant amount of time to transfer and
install the new configuration, and perform a device reset. A live device update causes unnecessary
downtime and potentially enables more remote attack vectors. We address this challenge by lever-
aging the proxy-based IoT architecture from [3]. Each IoT device connects to a virtual cloud-based
proxy. The access control rules only allow incoming and outgoing connections to and from a proxy
device. These rules are simple to apply, and the router that connects the IoT device to the Internet
can enforce them. When the network decides to deploy a new configuration, a cloud-based service
replaces the proxy that connects the IoT device with a different structure.

The main contributions of this work are the design of a diversified IoT architecture and the
algorithms to continuously learn optimized device configuration settings based on collected data
from an intrusion detection system. In particular, this work provides:

(1) the design of the diversified IoT architecture (Section 4.2), which modifies the configurations
for virtual machine proxies that access physical IoT devices,

(2) the formulation of an integer optimization problem to produce optimal device configurations
using the available attack data (Section 4.4), and

(3) a case study to present a proof-of-concept design of a proxy-based IoT device, cloud infras-
tructure, and client (Section 5).

The security of the proposed method is analyzed through a probabilistic model measuring the
success of remote intrusion attacks(Section 6.2). Finally, an empirical evaluation of the efficacy of
the device configuration selection approach against various remote attack profiles is presented
(Section 7). Our results demonstrate that, after several data re-evaluation iterations, the proposed
solution quickly learns a set of optimal configuration settings.

2 BACKGROUND

This section introduces a typical IoT network that can be vulnerable to remote exploitation attacks,
followed by an overview of the proxy-based IoT architecture as introduced in Almohri et al. [3].
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2.1 Example loT Network

A typical 10T subnetwork in a home or office environment includes IoT devices that connect to
the Internet through a local router. The devices are often independently accessible through the
Internet using client applications designed to operate specific devices. For example, a smart home
can include networked lights, kitchen appliances, thermostats, locks, surveillance cameras, and
voice-operated devices such as Amazon’s Echo. Systems such as If-This-Then-That (IFTTT) provide
simple programmable interfaces to extend the functionality of IoT devices [46]. Some IoT devices
independently connect to the Internet through a router while others connect to a hub. In this work,
we do not focus on vulnerabilities specific to devices that require a hub to connect. The solution
presented here targets devices that directly connect to the Internet.

Devices run common operating systems such as general-purpose variants of Linux or specially-
designed IoT operating systems such as RIOT OS [6] or Amazon’s FreeRTOS [53]. Devices also
run application-layer servers to respond to client requests on behalf of the owner of the IoT
subnetwork (usually a homeowner or an office administrator). A typical setup of a home or small
office 10T subnetwork involves direct and independent interaction of various devices with their
client applications, usually through a centralized vendor-specific cloud-based server. As the number
of devices grows, the complexity of handling security vulnerabilities and remote exploitations
increases, requiring special architectural considerations.

2.2 Proxy-based loT Networks

The diversified IoT architecture reuses the attack-resilient architecture in which IoT devices are
accessed through device proxies [3]. The trusted computing base consists of two components: (1) a
controller, and (2) a network of device proxies (Figure 1). The controller is a system that is assumed
to be secure against known attacks and regularly monitored for patches and security updates. The
controller includes software components and storage for collecting data from the IoT subnetwork.
The controller has full access to each IoT device and must always maintain connections with all
IoT devices. The controller can manage security policies for the IoT application. The controller also
manages firewall rules across the network or for individual IoT devices. The controller can deploy
and control device proxies. A device proxy can be installed as a daemon on the network switches
or routers. Alternatively, the device proxy can be a virtual machine on a cloud computing platform
or a private virtual cloud. We assume that the attack-resilient IoT architecture detects successful
attacks using anomaly detection in network data. The diversified IoT architecture utilizes the attack
data to adjust configurations for proxy virtual machines.

In the proxy-based IoT network, the defense includes a trusted computing base, the physical IoT
devices and their installed software, and the network that connects the IoT devices. The attacking
front includes software for remotely collecting reconnaissance data about the target IoT subnetwork.
The attacker can search for the IP addresses of the target IoT subnetworks and attempt to collect
software fingerprints. The attack software can use the reconnaissance data, locate an available
exploit, and launch a remote attack. Each attacker works alone, with no coordination with other
attackers. However, the attack software can launch parallel attacks. If the attacker compromises
an IoT device and modifies messages sent from the device or redirects messages to an attacker-
controlled device, the attack has succeeded. If the attack fails, the attacker attempts a new offense
until the attack succeeds.

3 RELATED WORK

Diversity as a fault-tolerance method [41] has been the subject of numerous studies, including
N-version programming [43], distributed replication [11], code-level randomization [37], anomaly
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detection [3, 29, 49, 52], and N-variant systems [22]. The idea of diversity in program design is
to systematically diversify the development of computer programs through the entire software
development life cycle. This approach results in N versions of a program that execute concur-
rently, tolerating faults in some of the executing versions. The same idea was sought as a security
mechanism against design faults caused by computer viruses [36]. If the program was carefully
diversified, the computer virus is unlikely to infect all the concurrently executing N versions. In
a denial-of-service scenario, for example, the benefit is that only the infected version becomes
unavailable while the healthy versions continue service. In a remote intrusion attack, all versions
must be vulnerable and the attacker must have the capability to attack all versions to succeed.
Jackson et al. argue that randomization of instruction sets, system calls, and library entry points
results in exponential difficulty of exploitation [34].

Designing secure IoT environments can benefit from diversifying the software stack used in
individual devices. This diversification scheme is powerful but is not specific to IoT environments.
The primary challenge in securing IoT systems is in providing resiliency at the network-level [62].
The present work is the first to propose the design of an IoT environment in which configurations
of individual IoT devices are diversified. For example, a diversified choice of operating system can
thwart various attack vectors. In a study of 15 years of reported vulnerabilities in 11 operating
systems, Garcia et al. reported that a low number of vulnerabilities were shared among the studied
operating systems [30].

Cloud-based diversification for improving system quality is a well-established idea. This work
extends cloud-based diversification to use attack data. We also show that the diversification approach
can be used as a protective layer over a network of physical IoT devices. Guo et al. developed a
game-theoretic model to study a reactive system that chooses from several available operating
system options to diversify cloud-based virtual machines [31]. CosTLO [60] lowers latency by
finding cost-effective configurations for cloud systems. Yuan et al. proposed using a moving target
defense to dynamically reconfigure network settings to combat passive eavesdropping [63]. This
work shares the idea of dynamic configuration but differs in using dynamic proxy configurations
to protect against remote intrusions, and learning from a history of attacks to further improve
diversification over time.

More recently, there have been attempts to study and employ diversity for secure cloud stor-
age [10], multicloud security [4], network intrusion [14], and security of infrastructure systems [40].
Zhang et al. developed a metric to study the effectiveness of diversity against classical network
attacks [64]. While diversity in distributed environments has been the subject of classical works
(such as the work by Birman [11] and ZooKeeper [33]), few works have provided dedicated models
for measuring the effectiveness of diversity. A subsequent work suggested system diversity to
mitigate attacks against unpatched vulnerabilities [14] and zero-day attacks [59].

4 DIVERSIFIED IOT ARCHITECTURE

This section presents the details of the diversified IoT architecture. The critical aspect of the
presented architecture is to use a layer of cloud virtual proxy machines that relay network requests
to and from IoT devices. The cloud software is modified, leaving the underlying software on
physical IoT devices intact. Our architecture uses an anomaly detection system’s signals to label
software configurations as vulnerable when a cloud proxy is compromised. An optimization
method recomputes a new selection of software configuration deployed on cloud proxy machines to
move away from the vulnerable configuration. Note that this work does not address the problem of
anomaly detection, assuming an anomaly detection method exists in parallel to aid the diversification
process.
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The rest of this section presents a threat model concerning remote intrusions (Section 4.1), an
overview of the diversified IoT architecture (Section 4.2), the proposed software configuration
method (Section 4.3), and the optimization we use to select configurations (Section 4.4).

4.1 Threat Model

We assume that attackers can establish remote connections and have no physical access to the
target IoT devices. The attackers know the IP address ranges for the target IoT subnetworks (IP
addresses could be found by analyzing client applications that connect to the target devices).
Attackers can analyze the configurations of remote machines. Since devices are only accessible
through proxy machines, the attackers would only be able to examine the configuration of proxy
machines. Attackers do not initially have a complete and accurate view of the configurations used
in the targeted proxy machines. Attackers can perform black-box testing to find the available and
exploitable vulnerabilities in the targeted proxy machines.

We assume that the actual IoT devices are highly vulnerable because of executing outdated
software for which vulnerabilities have been exposed. Thus, when a proxy machine is compromised,
the attacker can exploit the target IoT device. In this work, we also assume that attackers are
motivated by objectives beyond mere compromise of the IoT devices. The ultimate attack goal is to
produce deceitful messages using the compromised IoT devices. As a result, the attacker aims to
divert the activities of the IoT subnetwork towards malicious outcomes. When the attacker gains
access to the proxy virtual machine, the attacker can exploit the corresponding IoT machine after
spending some time to perform the exploitation.

The defense (in the target network) has an exploitation detection mechanism that may be
imprecise and requires a period of data analysis. When the IoT subnetwork suspects that a node u
is compromised, a compromise counter for the configuration used in u is incremented to affect the
outcome of the upcoming configuration selection as described next. The defense may be imprecise in
detecting the compromised devices. That is, at the beginning of each interval of reviewing the status
of 10T devices, the defense may not know that some vulnerable devices were actually compromised.
That said, we assume that the defense eventually detects if an IoT device is compromised, even
though the detection can miss several iterations of attacks.

4.2 Design Overview

The diversified architecture extends the proxy-based architecture by diversifying and dynamically
modifying the proxy virtual machines that interface static and vulnerable IoT devices (Figure 1).
Remote clients only access IoT devices through a diverse set of proxy virtual machines (Py, P, . . .)
with varying configurations. The configurations evolve over time to learn the attacker’s skills and
disable the attacker from accessing a compromised proxy configuration in the future. A device
selector periodically executes a device selection algorithm (Algorithm 1) and replaces old proxy
machines accordingly.

To illustrate what we mean by configuration diversification, Table 1 shows an example diver-
sification of three proxy machines (the rows) for three categories of configuration options (the
choice of the operating system, the choice of the web server, and the choice of the transport layer
security implementation). The configurations in Table 1 would change over time to move away
from vulnerable configurations (if detected to be compromised previously) and to randomize the
choice of configurations to avoid predictability. Selecting the least vulnerable configuration is trivial.
However, diversifying the configurations for which vulnerability data is incomplete is challenging
and requires using integer optimization as described in Section 4.4.
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Fig. 1. Architecture of cloud-based loT device diversification. Shadowed subnetworks are not accessible from
the Internet. Each loT device is only accessible through a corresponding proxy machine in the cloud. Attackers
can only exploit proxy machines as they respond to Internet requests.

Figure 2 shows the lifecycle of our solution. The IoT network initializes with a random device
proxy to tunnel access to and from the target proxy device we want to protect (Step 1). Next, each
virtual machine proxy produces network request logs and stores them in a cloud database (Step 2).
An anomaly detection algorithm receives the network request logs to produce anomaly signals.
Note that this work does not address the specific methodology for anomaly detection and assumes
the availability of existing practical algorithms such as in [3]. The diversification algorithm uses the
information provided by intrusion detection to select a new proxy configuration (Step 3). Finally,
the proxy allocator deploys the new configuration in a virtual proxy machine (Step 4). The selector
requires a set of virtual machine instances corresponding to the various software configuration
combinations. The architecture initializes virtual machines with diverse configurations awaiting
deployment in Step 4. At the time of deployment, the allocator selects and turns on the virtual
machine that matches the configuration produced by the diversification algorithm. The allocator
turns off the current virtual machine and returns it to the pool of available configurations. A
virtual machine replaced due to high vulnerability is unlikely to be deployed shortly based on the
diversification algorithm. Once the allocator deploys the new virtual machine, the access control
rules are modified to only allow traffic to the physical machine through the new virtual machine.

Our architecture collects network data from the proxy virtual machines to facilitate anomaly de-
tection. Network data comprises requests at the application layer. In our implementation (Section 5),
we use HTTP requests between client applications that connect to the virtual proxy machines, which
in turn relay requests to the physical IoT devices. A record of all HTTP requests feed an anomaly
detection algorithm that clusters requests to spot unusual patterns. The architecture in Figure 2
uses signals from anomaly detection.

4.3 Diversifying Configuration Selection

This section describes how to select proxy configurations for randomizing and diversifying the
attack surface of IoT networks. First, we present a formal model of the Internet of Things and the
diversified IoT architecture. The model is then used in Section 4.4 in developing a constrained
integer optimization problem for selecting optimal proxy configurations with the objective of
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Fig. 2. Life cycle of device configuration diversification. The process starts by randomly selecting a proxy P;
from the available configurations. As the loT network operates, an attack monitor collects network request
data from proxy. The collected data guides selecting a new proxy configuration Py if P; has a high attack
frequency or the algorithm decides to diversify away P;.

Operating System Web Server TLS Firewall
Win Ubuntu Amazon Apache Nginx Node.js Openssl GnuTLS R1 R2 R3
Server Linux
(21 0 1 0 1 0 0 0 1 1 0 0
vy, 0 1 0 0 0 0 0 1 0 1 0
U3 0 0 1 0 1 0 1 0 0 0 1

Table 1. An example configuration matrix (for devices vy, vz, and v3) that can grow significantly larger. Major
software package versions can be added as extra configuration options. The optimization problem is to find a
configuration that optimizes a global objective defined by the function f(X) (Section 4.4).

increasing diversification (and reducing predictability) and avoiding configurations that are more
likely to be compromised by attackers.

The Internet of Things. An IoT subnetwork is a digraph Gy = (Ug, Ex, Lx) with the set Uy of
nodes, the set Ej of edges (ordered pairs of distinct nodes), and the set L of labels for the edges
in Ey. k is the subnetwork’s universal identifier, distinguishing it from other subnetworks. Two
subnetworks Gy and G; of G are neighbors in G if G has an edge (u,v) € (Ex X E;) U (E; X Eg). A
node in a subnetwork represents an IoT device. Nodes are assumed to be at least connected to one
subnetwork, through an Internet protocol. Nodes are not necessarily connected directly to the
Internet. Instead, a node can communicate with Internet clients through other nodes. The set of
nodes in a network Uy = Vi U Wi may contain both proxy nodes Vi and physical nodes W.

Attackers may connect to a target IoT subnetwork Gy through several neighboring subnetworks.
These neighboring subnetworks are allowed to connect using various protocols such as HTTP over
TCP for the application and transport layers. Attackers can exploit vulnerable protocol implementa-
tions (such as [5]) to compromise the devices. Even with a secure communication protocol such as
Transport Layer Security (TLS) and QUIC [27], applications on IoT devices can still be vulnerable
to remote exploitation attacks.
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Symbol Interpretation

Gk Digraph representing the
network

Vi Set of proxy nodes

Wy Set of physical nodes

X Configuration matrix for all
proxies
Q One configuration vector

f(X) Global objective function

p(X) Configuration replacement
cost

I Weight of p(X)

0(X) Expected vulnerability cost

1) Weight of (X)

Table 2. A table of major symbols used throughout the article.

Diversified IoT Subnetwork. A diversified 10T subnetwork A is an IoT subnetwork that (1) has
several device proxies connected to every physical IoT device, that is, |V.z| > |W4|, and (2) contains
an incomplete bipartite subgraph between the two node subsets V4 and W, with edges E7; C Ex
that only connect V.4 and W4. Note that the number of device proxies for each physical device can
vary. Each device proxy can use a distinct configuration from other device proxies used to represent
the same physical device. Ideally, all device proxies in V4 should use distinct configurations.

Refreshing device proxies.

The diversification algorithm and the proxy allocator (shown in Figure 1) within the cloud
subnetwork N, manage the refreshing process (Algorithm 1). Let select (X, z) be a function to
uniformly select z elements from a sequence (or set) X. At randomly selected times, the controller
node selects a subset V" of z device proxies from Vj for refreshing. The subset with minimal current
network activity is selected to avoid disrupting active events and network traffic in the physical
IoT devices. Avoiding disruption is platform-dependent. For example, in a cloud-based setting,
the controller (Figure 1) can examine the current traffic load of the device proxy. Algorithm 1
continues to produce z configuration options in the vector @, by solving a multiobjective integer
constrained optimization problem (described in Section 4.4). Calling solve (X,D) uses BARON [55]
(as a generic solver) to solve the optimization problem (as explained later in Section 4.4). X is a
matrix of configurations for machines (defined later), and D is the dataset showing the security and
usage histories of the current configurations.

Then, machines are produced by calling produce (Q), given a configuration vector Q. Finally,
each existing machine x € V' is replaced with a new machine y € Y by calling replace (x, vy,
G), modifying the underlying network structure captured by the graph G.

Note that the choice of select and solve are not influenced by attacker-controlled IoT devices
(that were compromised). The solution produces by solve can only be predicted when attackers
are aware of the vulnerabilities of all devices and whether or not the IoT network has indeed
observed successful attacks on the vulnerable configurations. That said, the attacker’s view of the
defense knowledge is limited. To reduce the predictability of the results, select also randomizes
the configuration selection.
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Algorithm 1 Select configuration and refresh device proxies.

Require: G = (Vi U W, Er),Q
1 V'« select(Vg, 2)

Q; « solve(X,V})

Y « produce(Q})

for (x,y) € (V,Y) do
replace(x,y,G)

end for

return G

A U R >

4.4 Optimizing Configuration Selection

This section develops the optimization problem, as the key contribution of this work, which can be
solved using standard integer optimization problem solvers (such as BARON [55]). Algorithm 1
uses the solver to compute the optimal value for the optimization problem in the rest of this section.
BARON is a general mixed-integer solver for solving optimization problems. This work does not
extend or modify BARON but uses it as part of a novel process for dynamically selecting software
configurations.

The cloud controller produces device proxy configurations by solving a multiobjective integer
constrained optimization problem. The objectives are to minimize the configuration replacement
cost, configuration vulnerability cost, and the number of future configuration changes. As the param-
eters to optimize represent conflicting goals, the optimization is designated as a multiobjective
optimization problem. The first aim is to reduce the number of repeated configuration settings
between two consecutive configuration selections (for example, avoid using the same kernel version
consecutively). The expected device vulnerability is identical for all configurations when the cloud
controller has no historical evidence of device compromise. The configuration vulnerability cost
is adjusted once event sequences with fabricated consequences are created from device proxies
with a particular configuration. Finally, the cloud controller should aim for fewer configuration
changes when possible. More changes can cause delays in the functionality of physical devices as
the device proxies are being replaced. Assume that future changes are correlated with configuration
vulnerability cost; when a weak security configuration is selected, more reconfiguration is needed.

Points on the Pareto front are found by minimizing a convex combination of the individual
objectives,

FX) = Bp(X) + 0o (X),
where f > 0, w > 0, f + w = 1, X is a configuration selection matrix (Table 1), p(X) is the
configuration replacement cost of X (a measure of the frequency with which X is changed), and o(X)
is the configuration vulnerability cost of X (a measure of the probability of X being compromised).

Each configuration option is represented as a binary decision variable X;;. The ith row of X
corresponds to the configuration of the device proxy i, and the jth column corresponds to the
configuration option j. The choice of binary variables is because configurations are represented as
selections. For example, X7, = 1 may indicate that for virtual machine 1, the selected operating
system (represented by column 2) is Ubuntu Server 18.

Algorithm 1 is executed when the IoT subnetwork has to refresh the configuration of device
proxies. After the last device proxy configuration refresh, the IoT subnetwork prepares the values
of p and o. Only at the beginning of a new interval J, the function f(X) is computed to reflect
the new computed values for p and . The configuration replacement cost is computed based on
the configuration selections. When a configuration option is selected and deployed, the option is
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recorded along with a selection counter showing the number of times the configuration was selected
for a period of time. The counters are updated when the selected configurations are deployed. Let
a;j denote the number of times the configuration j was selected. The function p(X) computes the
cost of repetition as:

p(X) = Z anij-
ij
The configuration vulnerability cost is relative to the number of times fabricated messages
originated from a set of configuration selections during é. Let b; denote the number of times a
proxy device with configuration j was reported to generate fabricated messages during § — t. Then,
0(X) computes the cost of vulnerable configurations as

G(X) = Z ijij-
ij

There are several constraints to the optimization problem. Modeling monetary costs has previ-
ously been heavily studied and is not discussed in this work. Thus, we assume all configurations
have the same cost. An upper-bound constraint limits the number of device proxies in the system
(i.e., the number of rows in X). The combination of columns in a single device proxy is also con-
strained. For example, suppose that there are two operating system options, Ubuntu Linux 18 and
Amazon Linux, represented in columns j = 1 and j = 2, respectively. No device proxy i can have
X;1 = 1 and X;3 = 1 at the same time. Thus, the constraint X;; + X;, = 1 limits the choice of the
operating system.

The solution must also exhibit diversity among the device proxies. For example, no two device
proxies for the same physical device should be given the same system configuration at the same
time, illustrated by the constraint

C
Z(le -Xy)' 21,
j=1

if X were a M X C matrix and device proxies 1 and 2 were assigned to the same device. The diversity
constraint can be applied to all virtual devices for all physical devices such that a degree of diversity
is achieved. Diversity in each category of configuration options (such as the choice of the operating
system) is ensured by constraints on the columns. If X is a M X C matrix and D is the desired
diversity such that no more than n = M — D device proxies share option j, then the constraint is

M=

Il
—

X; j < n.
l
This constraint is needed to ensure that the optimization algorithm (the function solve) deliberately
diversifies configuration selections across various virtual proxy machines. Without the diversity
constraint above, solve may select the same operating system version for all virtual machine
proxies as long as the selected operating system version minimizes the objective function f.

5 CASE STUDY

The presented diversification architecture (Section 4) relies on three components. One is the use
of cloud-based proxy machines to access IoT devices. This section reports on a proof of concept
implementation of the proxy-based access of IoT devices. Second, the core of the diversification ar-
chitecture is the optimization algorithm that utilizes the available data to select device configuration
settings that are likely to improve the network’s overall security. Section 7 describes simulations to
evaluate the efficacy of the diversification algorithms. Third, the architecture depends on intrusion
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Fig. 3. A case study to design a proxy-based loT camera. Part A shows a direct communication from an loT
camera behind a router with mobile client applications. Part B shows our alternative design using a Raspberry
Pi 4 camera module, a restricted firewall rule to limit communication with a cloud load balancer, and a pool
of virtual machine instances (in an Amazon Web Services cloud), each with a different operating system
configuration to use as proxy machines.

detection and data analysis methods to decide if a particular machine has been the victim of attacks.
Intrusion detection for IoT devices is beyond the scope of this work. In the remainder of this section,
the design and implementation of a proxy-based IoT camera are presented. Finally, an experiment
shows the impact of redirecting requests through a proxy on the network performance.

5.1 Design and Implementation

We developed a customized IoT camera to demonstrate the feasibility of accessing IoT devices
through a proxy. The IoT camera is constructed based on the design of Figure 3.

Basic Design. The IoT camera responds to requests from a client application to retrieve images.
Also, if a motion is detected, the camera sends motion images to the client application. The camera
uses a web server as middleware to send and receive image files. The camera is built using a
Raspberry Pi 4 camera module (referred to as the module) with a wireless network interface. An
original ARM Ubuntu 18 is installed on the module. Images are captured using the open-source
motion package.

Diversified Design. To diversify the interface with the camera, the client’s direct interaction with
the camera is replaced by a mediating load balancer in Amazon Web Services (AWS) cloud. The
load balancer fixes the IP address for the communication and abstracts the dynamically changing
virtual machine proxy. A pool of virtual machine proxy servers is created, each proxy using a
different operating system (Ubuntu Server 20.04 LTS, Amazon Linux 2 AMI, SUSE Linux Enterprise
Server 15). Each operating system uses a separate build for the Apache web server and transport
layer security (TLS). The load balancer uses the default round-robin algorithm to distribute the
load among the available proxy machines. A listener rule is added for each proxy with an initial
equal priority (a priority is an integer value indicating which rule should be followed first). The
priority values are modified to forward requests to less vulnerable proxy machines.
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Method No. Avg. Std. Median
of Transfer  Deviation (MS)
images Time (MS) (MS)

From 82 502 329 433

cloud

To cloud 82 504 327 483

LAN 82 32 20 26

Table 3. Time for data transfer to and from a cloud-based proxy, compared to a local area network direct
transfer of images from an loT device. The average file size for each image is 11 KB. Time values are in
milliseconds. The transfer method is from or to cloud, or a direct transfer through a local area network (LAN).

5.2 Network Performance

This section presents the results of an experiment to study the impact of the diversified architecture
(Section 4) on network performance. First, we measure performance by comparing the speed of a
direct data transfer with that of a proxy-based data transfer.

Experiment Setup. Two identical Raspberry Pi modules (M; and M;) were used to detect motion
and take images using the onboard Camera Module V2 (Figure 3). The two modules are used
to measure the network performance of the diversified IoT architecture. M; directly connects to
a client using a LAN, but M is set to use the diversified architecture. M; uses a web server to
respond to periodic update requests from the client to retrieve motion images. M,, on the other
hand, connects to the cloud and uploads each image I} through the load balancer to a designated
proxy P;. The client would send the periodic update requests through a cloud-based load balancer
to a proxy virtual machine P; deployed by Algorithm 1 (Section 4.3). For My, the image is stored
on a shared Amazon Simple Storage Service (S3) bucket, which is a static cloud-based file system.
Regardless of the designated proxy used by the IoT device or the client (even when i # j), the client
can retrieve the corresponding image I.

Results. The two modules M; and M, capture motion images from an identical angle and are set
to upload the images upon receiving a request immediately. To measure the impact of proxy-based
image transfer on network performance, we let the two modules respond to image requests from the
client. For each module, a separate client process continuously sends an image request every five
seconds. The module uses the camera API to constantly take images and stores them locally (for
M;) or on the S3 bucket (for M;). This design decouples the requests from image captures, which
assists the proxy-based diversified architecture in improving performance.

The average time to transfer images to the cloud-based proxy is approximately 0.5 seconds.
Similarly, the average time to move images from the cloud-based proxy to the client is around
0.5 seconds (Table 3). We compared these results with the less likely case that the client and the
IoT devices directly communicate over a local area network. As expected, direct communication
is significantly faster. However, given that most services require cloud intervention, the network
performance of our prototype is reasonable. Note that during the experiments, no other significant
network activity was in place.
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6 SECURITY ANALYSIS

To analyze the security of the presented solutions, we highlight the achieved security properties and
develop a probabilistic model (Section 6.2) for establishing the security boundaries and limitations
of the proposed approach. The diversified IoT architecture provides:

(1) dynamic resilience against previously undiscovered vulnerabilities (such as Ripple20 [48],
which affects millions of exposed IoT devices) on the platform level, and

(2) isolates devices from direct interaction with client applications, shifting the attack surface to
dynamic virtual proxy machines.

In this section, we analyze the diversified IoT architecture and show that the achieved security
properties are subject to:

(1) attacker skills and resources,

(2) the availability of remote exploitation vulnerabilities, and

(3) the precision of the output of the attack detection algorithms based on which Algorithm 1
selects new configurations.

6.1 Targeted Vulnerabilities

In this work, we address securing devices that directly interact with remote clients. This interaction
can result from a design choice (for example, to improve network performance) or the side-effect
of using third-party software packages. The side-effect is that the utilized third-party software
packages may leave network services open to remote clients. Further, we distinguish between
two types of vulnerabilities. Our solution protects against remote exploitation attacks on the
generic system services used by IoT devices such as web servers or the operating system kernel.
For example, a previous version of Amazon’s FreeRTOS [53] was vulnerable to arbitrary remote
code execution [38] due to a memory corruption exploit. Independent of specific vendor-supplied
software, attackers can exploit any IoT devices with a vulnerable installation of FreeRTOS and gain
unauthorized remote access. The presented solution does not particularly address vulnerabilities in
vendor-specific software (further discussed in Section 6.3).

6.2 Achieved Security

Here, we theoretically model the achieved security of the diversified IoT architecture subject to the
targeted vulnerabilities.

Considering remote intrusion attacks on the software platform of an IoT device as Bernoulli
trials, let Xx = 0,1 be a Bernoulli variable indicating failure, success for attack event k. Also,
let ¢ be the sample space of all possible outcomes, E be the set of events, P the attack success
probability distribution, and Q the defense success probability distribution. Represent attack event

k as a Markov chain of Bernoulli variables (each corresponding to an attack step) Y1, Y2, ..., ¥,
such that
Xk = 1_[ i,
iel
where I C {1,...,n} captures the necessary steps Y; for Xj = 1.

The diversified IoT architecture depends on intrusion detection data. As described in Section 4.2,
once an intrusion is detected, the expected vulnerability score of a virtual proxy is increased. Thus,
the probability that a defense succeeds partially depends on the accuracy of intrusion detection.
In general, the probability that a particular attack event ex € E succeeds (X = 1) depends on the
probability of the event 5 that the attack is executed correctly given (i) the posterior probability that
the intrusion detection mechanism at the defense side is accurate (represented by Bernoulli variable
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By = 1), (ii) the probability that the defense modifies the proxy configuration immediately before
the necessary condition for an attack to succeed (captured by the Bernoulli variable Cy = 1), and
(iii) the probability that Algorithm 1 diversifies away all vulnerable configurations for which the
attacker is capable of compromise (captured by the Bernoulli variable Dy = 1). Thus, the probability
that an attack incident (one attack attempt) succeeds is defined as

PXx =1]=P[p|Br =1, Cx =1, Dy =1].

Note that defense modification of proxy configurations either follows a predictable procedure
(for example, after ¢ time ticks) or randomly selected points based on a particular distribution.

6.3 Limitations

The presented diversified IoT architecture increases the resilience of a smart-home IoT network.
That said, the architecture is limited to platform-level diversification of standard open-source
software used to set up IoT devices. Diversifying device-specific (or vendor-specific) systems
requires changes to the presented architecture to enable diversity for specific software components.
For example, vulnerabilities that target application logic on an IoT device cannot be mitigated
using the proposed architecture in this work. Instead, a more modular architectural design for
IoT devices is needed. Further, open-source components must be designed to enable diversity
at specific features of the application logic. One example is to develop a variety of solutions for
user authentication with a unified software interface. Then, a diversified security architecture can
leverage these components by relinking them at runtime.

A second limitation of the proposed work is the additional components and costs associated
with virtual proxy machines. That said, our design does not need to be deployed on a cloud archi-
tecture. Instead, an internal network can use software-defined networking [39] and virtualization
platforms [2] to achieve a similar result.

7 EFFICACY OF DIVERSIFICATION

We measure the efficacy of the diversified proxy-based IoT architecture through simulated attacks.
Each simulation examines a distinct attack or defense behavior as explained in Section 7.2. The
general research question is whether the proposed diversified approach can effectively protect the
target IoT network by isolating vulnerable devices? In Section 7.1, we present an attack algorithm
that is used as the basic attack approach. Algorithm 2 represents an extreme attack scheme that
targets every IoT device configuration in repeated attack attempts. The attack results presented in
Section 7.2 are produced by slight variations of Algorithm 2.

The code for producing the optimization problem and performing the simulation is published as
an open-source project: https://github.com/kussl/Diverse-IoT.

7.1 Attack Algorithm

In this section, we describe a strong attack strategy that repeatedly attacks targets, aiming to
compromise devices, collect data, and optimize the attack in consequent attack iterations. Attacks
are assumed to occur as campaigns (commonly referred to as cyber espionage campaigns [58]). An
attack campaign comprises several attack iterations that terminate when the attacker is no longer
interested in (or capable of) continuing the campaign. This work is not concerned with reasons
that lead to terminating a campaign.

The steps for the attack campaign are summarized in Algorithm 2. Let compromise (u) be a func-
tion to execute remote exploitation steps to compromise a target machine u, and canattack (T, X",
S) a function that outputs T4 c T, which includes the machines that could be attacked according
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to the attacker’s skills S. The attacker’s skills is a vector of size C with elements corresponding to
the columns of X* (a configuration selection matrix). Each element of the vector S is a binary value
indicating the possibility to use the configuration to execute an attack. The function compromise
can be implemented as scripts that exploit a buffer overflow vulnerability [57], inject shell code, and
open a remote connection. compromise and canattack are related. The result of an attack attempt
in compromise helps adjusting the data produced by canattack. Attackers can use reconnaissance
attempts to find targets and decide if they are vulnerable, decide if the vulnerabilities can be
exploited, and whether in a previous attempt compromise was capable of successful exploitation.

The algorithm starts by updating the attacker’s knowledge of the target nodes T and the observed
configuration matrix X*. This could be done by performing reconnaissance on the target network.
Next, the attacker analyzes T and X* to decide if there is a subset T4 that can be attacked. The
for-loop iterates over uniformly selected nodes (executed by the function select) in T4. In each
iteration, the attacker attempts to compromise the selected nodes. Following the for-loop, the
attacker verifies if the minimum number N of compromised devices is achieved. If so, the attacker
continues to execute the attack beyond compromising the devices, for example, by deleting data
from the devices or propagating through the network to compromise devices that are not directly
accessible through outside a local area network (LAN). Here, the focus is on preventing the remote
exploitation attack. Further attack goals once a device is compromised is beyond the scope of this
work.

Algorithm 2 The algorithm for an attack campaign against a target network Gy.

Require: X*,N,T,S
1: while attack campaign should continue do
2. Update T and X*

3 T4 « canattack(T,X*, S).
4. foru € select(T*) do
5: compromise (u)
6: if attack is successful then
7: add u to the set T°.
8: end if
9:  end for
10: if |[T°| > N then
11: Execute the attack.
12: else
13: Halt for A time units.
14:  end if

15: end while

7.2 Attack Results

This section describes the design and the result of attack simulations using Algorithm 2 and the
defense strategy described in Section 4.3. Simulations show the efficacy of the defense using the
expected vulnerability score. The expected vulnerability score is a nondecreasing value associated
with each virtual proxy with a distinct software configuration. The defense evaluates the results
collected from attacks and increments the expected vulnerability score(by adding one to the score
of each device that was found under attack) if the proxy is believed to have been the subject of an
attack.
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Recall that we assume the defense is using a machine learning algorithm to perform pattern
analysis and detect likely attacks. The expected vulnerability cost, as defined in Section 4.4, indirectly
measures and positively correlates with the probability of compromise and the cost (such as
economic and social cost) of being compromised.

Simulation Setup. The simulator selects a random set of available attacker skills to exploit the con-
figurations in each iteration and sets the corresponding skill values to 1 in the vector S (representing
attacker skills, defined in Section 7.1). For each configuration X;; = 1 = S;, the attacker can exploit
a vulnerability in the configuration to enable remote access to the target proxy virtual machine. The
diversity parameter (Section 4.4) is set to D = |C/M| < M (C is the number of configurations and
M is the number of proxy nodes). Recall (from Section 2.2) we assume attackers that are capable
of compromising the virtual machines can eventually compromise the corresponding IoT devices.
The number of nonzero values in S is arbitrarily chosen to be 20% of the number C of available
configuration options from which the defense can select a proxy virtual machine. Note that a
random choice of attacker skills represents the reality of the variation in tools and exploits available
to attackers. It is expected that attackers do not always target identical exploits, hence the assumed
uniform distribution of possessed attack skills (matching exploitable targets).

The initialization parameters for each simulation are presented in Table 4.

Defense Assumptions. We assume that the defender can review data from virtual machines using
an external controller machine and use anomaly detection to detect malicious messages generated
from a specific machine. Two issues concern this assumption. First, the virtual machines emit
application messages that are used by the central controller. In a virtual cloud-based network or
a software-defined network, these messages can be collected and stored by the trusted central
controller. Second, an anomaly detection system that is used by the central controller can partially
detect malicious application-level traffic from virtual machines. That is, we assume that the anomaly
detection algorithm has a nonzero false negative rate. That said, given enough time, the anomaly
detection will detect whether a particular virtual machine is compromised as we assume that the
attacker generates enough traffic to be analyzed and detected.

Note that even though the defense can analyze traffic generated by virtual machines, we assume
the defense cannot detect and block all attackers. The defense has no information on the number
of attackers, their origin addresses (that can be spoofed), whether an attack is undergoing, and if
a virtual machine that is not actively sending traffic was compromised. Thus, the diversity and
randomness introduced in this work are useful to protect against obscure attack attempts.

Number of  Vulnerable Detection
Simulation Configs Configs Accuracy B 1)
A 32 20% 100% 0.1,0.5,0.9 0.1,0.5,0.9
B 32 20% 20%, 45%, 70%, 95% 0.5 0.5
C 16, 32, 64, 128 20% 95% 0.5 0.5

Table 4. Initialization of simulation parameters. f is the weight for the expected proxy replacement cost and
w is the weight for the expected vulnerability cost for optimizing the configuration selection (Section 4.4). For
all settings, we use 8 devices, Diversity parameter 4, and 1 proxy per device.

Measuring Success. We measure the attacker’s success by the expected vulnerability cost (which
is a value to be minimized by the defense; see Section 4.4). The attacker succeeds when attacking
a machine with a vulnerable configuration for which the attacker has the skills. For simplicity,
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in the simulations, each configuration represents a remote service that, if compromised, allows
the attacker to control the machine. As the attacker succeeds in compromising more machines,
the expected vulnerability cost increases. Thus, the attacker’s success is a real-valued quantity
as opposed to a binary result. In each iteration of the simulation, the defense reviews the attack
data. If an attack attempt was successful in the previous iteration, the defense updates the security
configurations used in the compromised proxy virtual machine. The configuration vulnerability cost
for each configuration used in the compromised proxy is incremented by one. The configuration
replacement cost for each selected configuration is also incremented by one at the beginning of
each simulation iteration.

The expected vulnerability cost accumulates through the iterations. The experiment is repeated
with various values for § and o to evaluate the effect of the two components on the objective
function. Note that in this scenario, the defense adjusts the configuration in each iteration, assuming
the defense has an active reconfiguration policy. The expected vulnerability score stabilizes after
about 100 iterations.

Configuration Choices. The results of Figures 4a and 4b show 150 iterations of attack attempts
with 32 available configurations and eight IoT devices connected through eight proxy virtual
machines. Recall that a software configuration for a proxy only diversifies the platform (such
as choosing operating system, TLS, web server). A software configuration can be formed from
numerous available choices. For example, the Linux operating system has several distributions
(e.g., Ubuntu, Debian, Red Hat), each available in a variety of supported versions (it is possible
for an older version to be free of a vulnerability introduced in a newer version). Further, one can
choose from several available open source TLS implementations (e.g., GnuTLS [44], Tink [26],
OpenSSL [15], Rustls [12]).

Simulation A. In this simulation, we study the effect of two different attacker behaviors on the
security of a diversified IoT network: (i) an aggressive and comprehensive attack campaign, and (ii)
a step-wise campaign. The simulation for each scenario is repeated three times with three different
parameter settings to also measure the effect of the two major hyperparameters. f§ refers to the
weight of configuration replacement cost and w refers to the weight of the expected vulnerability
cost (Section 4.4). In each attack iteration of the aggressive campaign, all targets that are vulnerable
for which the attacker has the required tools and skills are exploited. That is, the for-loop in
Algorithm 2 is fully explored. Figure 4a shows the results of the aggressive attack scenario. Note
that the defense reconfigures the system in each step. In the second attack scenario, the attacker
only uses a single vulnerable target and does not reveal the intent to exploit other targets. To see if
this attack campaign strategy is effective, we executed this strategy and produced the results of
Figure 4b. This scenario captures time and skill limitations of the attack campaign. As the results
show, the attacker is less successful as the overall expected vulnerability achieved is lower.

One notable result is by comparing the line showing the case where no diversification was in
place. In this experiment, the same attack sequence is used by the defense only picks one set of
configurations (randomly) at the beginning of the simulation and does not change the configurations
during the following 149 iterations of attack. Observe that at the last iteration a constant defense
has a twice higher expected vulnerability value compared to the diversified architecture, showing
the efficacy of the approach under the provided assumptions.

Simulation B. In this simulation, we study the effect of attack detection accuracy on the expected
vulnerability score. Precisely, we would like to know the dependency of the accuracy of detection
an attack on the diversification method.
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Fig. 4. 150 iterations of an attack campaign in which the defense modifies the configuration setting after each
attack attempt. y-axis shows the cumulative expected vulnerability cost for all proxy machines and x-axis
indicates the number of iterations increasing in time. The expected vulnerability is a cumulative measure of
the frequency of attacks on all proxy machines used by the defense. It grows as more attacks are observed on
machines.
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Fig. 5. Effect of detection accuracy on isolating vulnerable configurations. Percentages indicate the accuracy
of detecting if an attack has occurred following an attack iteration. Higher y-axis values indicate more
vulnerable selections.

In the conducted experiments, we used four different attack detection accuracy values. A detection
accuracy controls selecting new configurations in response to attacks. If attack is detected, the data
generated from the attack is used to select new configurations.

Simulation C. Finally, Figure 6 shows the effect of the number of available configuration options for
a single component in the virtual machine (e.g., the choice of operating system, including various
kernel versions). As the number of configurations grows, the expected vulnerability declines,
suggesting the difficulty of the attacker in compromising the target machines. As expected the
earlier iterations show closer values for all different values of C. That said, C = 128 shows a
steady and slow growth compared to lower values. The core assumption of this simulation is that
configurations are chosen such that each is distinct in terms of security vulnerabilities. Also, the
available configurations have a smooth distribution of vulnerabilities. That is, there are both weak
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Fig. 6. 150 iterations of an attack campaign in which the accuracy of the defense in detecting the attack
varies by a probability value P = 0.9 with various numbers of configurations (represented by C). A higher
number of configurations lowers the expected vulnerability score of the defense.

and strong configurations. Thus, as the number of available configurations grow the expected
vulnerability of the network remains lower over time, compared to a small number of configurations.

8 CONCLUSIONS

This work demonstrated the use of platform software diversity to mitigate remote intrusion attacks
on IoT devices. Diversification relies on optimizing the selection of software configuration settings
according to continuously collected anomaly detection signals. We showed the formulation of the
problem as an integer optimization problem, which (given accurate data) can result in a stable state
where the most secure configurations are selected. There are three key features of the proposed
method. First, one can observe from the simulation results that the defense can quickly discover
the current best configurations, trained by actual attack incidents. Second, the defense can continue
to learn about the state of security in the available configurations. When the system administrator
patches vulnerable software or receives more secure updates, the newly updated software results
in a new configuration. With the new (and more secure) configuration on a virtual machine proxy,
fewer attack incidents will be observed over time, and thus the new configuration will be favored by
the optimization problem. Third, system administrators can conveniently implement the diversified
IoT architecture using the prominent cloud-computing platforms. As demonstrated in our case
study, our approach is feasible and causes predictable network delays due to the extra round-trip
to the cloud, which can be a reasonable cost for the provided security level.
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