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Abstract—With current IoT architectures, once a single device
in a network is compromised, it can be used to disrupt the
behavior of other devices on the same network. Even though
system administrators can secure critical devices in the network
using best practices and state-of-the-art technology, a single
vulnerable device can undermine the security of the entire
network. The goal of this work is to limit the ability of an
attacker to exploit a vulnerable device on an IoT network and
fabricate deceitful messages to co-opt other devices. The approach
is to limit attackers by using device proxies that are used to
retransmit and control network communications. We present
an architecture that prevents deceitful messages generated by
compromised devices from affecting the rest of the network. The
design assumes a centralized and trustworthy machine that can
observe the behavior of all devices on the network. The central
machine collects application layer data, as opposed to low-level
network traffic, from each IoT device. The collected data is
used to train models that capture the normal behavior of each
individual IoT device. The normal behavioral data is then used
to monitor the IoT devices and detect anomalous behavior. This
paper reports on our experiments using both a binary classifier
and a density-based clustering algorithm to model benign IoT
device behavior with a realistic test-bed, designed to capture
normal behavior in an IoT-monitored environment. Results from
the IoT testbed show that both the classifier and the clustering
algorithms are promising and encourage the use of application-
level data for detecting compromised IoT devices.

Index Terms—Internet of Things, Intrusion detection, Unsu-
pervised learning, Network security

I. INTRODUCTION

The Internet of Things (IoT) connects physical devices to
the Internet. Applications deployed on the Internet of Things
include devices that are capable of monitoring and capturing
events, making decisions according to specifications set by
vendors or system administrators, and coordinating with other
devices to apply application-specific policies. IoT device ven-
dors typically use conventional open-source software, mainly
modified to suit the purpose of IoT applications, to operate
the devices. For example, Amazon FreeRTOS [1], Android
Things [2], Raspbian [3], Embedded Linux [4], and Riot [5]
are among the growing number of modifiable and open-source
IoT operating systems.
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Open-source software modules, although widely deployed
and well-tested, often have known and zero-day vulnerabilities
which attackers can exploit to achieve unrestricted remote
code execution. For example, in 2019, embedded Linux was
reported to have a root account vulnerability [6]. Such vulner-
abilities may endure on many devices as system administrators
miss the opportunity to patch their devices promptly. Attackers
can perform reconnaissance operations on the target network to
discover the type of software used and find remote exploitation
vulnerabilities [7], [8]. With access to a vulnerable IoT device,
the attacker can launch attacks from malicious nodes, disturb-
ing trust in the network. Precisely, attackers can manipulate
the application on the compromised device to send deceitful
messages to other devices that will cause them to behave
in ways that achieve the attacker’s goals, even though those
devices have not been compromised directly. Thus, a single
remotely compromised device can undermine the security of
the entire IoT subnetwork.

This work addresses the problem of securing an IoT subnet-
work by using application-level data generated on individual
IoT subnetworks and providing an architecture for limiting and
controlling access to the devices. Our solution aims to tackle
the security problem at the application layer and leverages
the role of the IoT subnetwork in monitoring the security
status, detecting vulnerable devices and healing from attacks.
IoT devices primarily exchange application data with remote
clients, which can be used to reason about the security of
the device itself. As suggested in several previous works [9]–
[17], the data generated on IoT devices can be used to learn
models for the behavior of malicious and benign devices.
The hypothesis is that machine learning techniques can be
utilized in an IoT subnetwork to determine the security status
of each device (secure or compromised). Once a compromised
device is detected, the IoT subnetwork can defend itself against
intruders by controlling the interface to IoT devices (for
example, by using virtual drivers [18]).

Several previous works provide models for analyzing data
collected from IoT network traffic. Meidan et al. propose to
use device white-listing by using classification [9]. DÏoT [10]
(and other similar works, such as [11]–[17]) improve anomaly
detection by using probabilistic classification of network pack-
ets. Choi et al. present a sensor activity correlation model that
requires no manual labeling but uses a bit-wise representation
of normal sensor activity and activity transition probabilities
as ground truth [19]. Sikder et al. describe several machine
learning models for analyzing sensor-level data collected from
mobile devices [20]. Their work is closest to the modeling
part of our work as it uses actual user behavior data in a
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classification model against malicious behavior.
In addition to data analysis, architectural solutions are

needed to secure networks against malicious devices. Barrera
et al. argue that well-established models for limiting network-
level activities by profiling IoT application behavior can be
effective [21]. Deadbolt uses virtual drivers to protect IoT
devices, for example, by providing encryption for network
traffic out of IoT devices [18].

We present an attack-resilient IoT architecture, which ex-
tends the state of the art in two directions. First, the existing
IoT data analysis frameworks mainly focus on network traffic
data and apply conventional anomaly detection techniques.
While these solutions are useful, they miss the information
from the application layer. Our hypothesis is that application-
level data assists in reasoning about the validity of data
exchanges across the network. Compared to miscellaneous
network traffic, application-level data is more vibrant and
has significantly less noise. Application-level data modeling
can be coupled with other models, such as analyzing mali-
cious activities (e.g., DÏoT [10]) to provide a comprehensive
data model for preventing large-scale attacks against IoT
subnetworks. Second, previous works do not integrate data
analysis with restricted network architecture. Restricting the
network architecture simplifies the data analysis to enable a
simple policy system to isolate suspicious IoT devices. The
architecture and data model provided in this article attempt to
address these two issues.

In our attack-resilient IoT architecture, a trusted controller
machine acts as a proxy to capture all device communication,
as well as application data and metadata (such as file attributes)
from all IoT devices. Security of the network depends on that
controller machine not being compromised, and preventing
a compromised device within the network from being able
to compromise other devices. The collected data represents
events, such as motion, that are captured on individual IoT
devices. Each IoT device sends events data in the form of
event sequences. Each event sequence represents several events
within a specific interval. Our model of event sequences
provides rich metadata that can be used to guide the analysis of
anomalous behavior across the IoT subnetwork. Compromised
devices are assumed to generate deceitful event sequences
to pollute the data collected from devices and confound the
trusted controller. Detecting compromised devices requires
controlling the traffic to and from devices and authenticating
data from devices. In our model, the controller authenticates
event sequences by requiring application data to be signed
using verified device keys. As opposed to application instru-
mentation proposed by Wang et al. [22], our attack resilient
IoT architecture uses a simple message signing protocol for
authenticating application data.

In summary, the contributions of this work are:
1) an attack-resilient IoT architecture in which a centralized

controller dynamically controls and manages IoT device
interactions, to provide security for the IoT network even
when some devices are vulnerable to remote exploitation
attacks (Section III),

2) a model of IoT application data and a data provenance
verification method based on a simple message signing

protocol (Section IV-A),
3) two anomaly detection models, based on classification

and clustering (Section IV-B), and
4) a prototype implementation (Section VI) and experi-

mental evaluation using an IoT testbed (Section VII).
Evaluation results show that on average 76% of the
attacker’s messages originating from a compromised
device can be detected. The best success rate of our
models was 91% on a 30-day dataset collected from an
actual IoT environment.

Next, we present the necessary background and related work
on securing IoT subnetworks.

II. BACKGROUND AND RELATED WORK

This section presents background on the Internet of Things,
followed by a discussion of the related work.

A. Internet of Things

We adopt a practical definition of the Internet of Things
(IoT), among the existing many [23], that characterizes target
IoT networks. We define things as devices that are designed
to be connected to the Internet with full or semi-automated
interactions with external entities (devices or humans). These
things are interchangeably referred to as devices or nodes
throughout this article. Because of Internet connectivity, IoT
devices enable a range of applications, for example, providing
real-time monitoring for human operators outside the target
network. An IoT subnetwork is formed by a set of collaborative
devices that are interconnected to serve a specific purpose.

IoT subnetworks often use a centralized control engine
entity that interacts with all IoT devices (Figure 1). The control
engine is responsible for data collection from the devices,
enforcing access control policies, and enable interaction with
client applications. Some IoT subnetworks allow direct client
application access to individual devices. Alternatively, com-
munication with an IoT device can be restricted to designated
devices. Many IoT subnetworks are set up with assistance from
cloud computing providers. For example, the AWS IoT Things
Graph [24] provides cloud assistance for connecting various
IoT subnetworks, enabling improved collaboration.

IoT Security Challenges. IoT subnetworks face several secu-
rity challenges. First, IoT subnetworks rely on the security of
individual devices and the software components that execute
on these devices. These devices are often developed with
severe cost pressures and time-to-market requirements that
result is failure to follow known best security practices in
their implementations. Attackers who can find vulnerable
devices may be able to compromise the entire IoT subnetwork.
Attackers can use the compromised subnetwork to inject false
data into other devices, and thus compromise the overriding
application. In the example IoT environment of Figure 1, an
attacker-controlled neighboring subnetwork attempts to gain
access to critical IoT infrastructure, the surveillance cameras,
to inject false data and influence access control policies
employed by the central IoT control engine. Second, IoT
subnetworks can be large, comprising hundreds of nodes.
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Fig. 1: A simplified IoT architecture with a cloud-assisted
access control policy enforcement. An attacker subnetwork can
exploit surveillance devices and cause undesired incidents.

With large interconnected subnetworks, maintaining security
is challenging. A system of device interaction is required to
control message exchanges across IoT devices. Third, IoT de-
vices may occasionally be set as part of a fog computing [25]
environment. IoT subnetworks that participate in a fog allow
a portion of the computation to be carried on individual IoT
devices. Heavier computations are offloaded on the cloud. This
requires continuous interaction of various IoT subnetworks,
effectively increasing exposure to remote attacks.

B. Related Work

Numerous works have considered various strategies for
securing IoT subnetworks. The main approaches use machine
learning models, blockchain-based access control, and pro-
gram analysis.

Machine Learning. Many existing works employ machine
learning techniques for IoT device identification. Device iden-
tification is useful and can aid in securing IoT subnetworks.
However, there is much to be done in terms of detecting secu-
rity breaches from active attackers that compromise selected
vulnerable IoT devices.

Classifying network data is used in a model proposed by
Meidan et al. [9]. In this model, devices are identified with
the assistance of manually labeled data. Based on a trained
classifier, devices are allowed access in an IoT subnetwork
if the device type is white-listed. Nguyen et al. developed
DÏoT [10], which uses Gated Recurrent Units (GRU) for
analyzing network-level data for anomaly detection in IoT
devices. The proposed model maps packets to symbols with
probabilities calculated by the GRU. The probabilities below
a threshold are marked as anomalies. In this work, we follow
a similar approach by using probabilistic reasoning to detect
anomalies. However, our anomaly detection model differs in
that it uses application-level data and meta as opposed to
network packets, it uses both classification and clustering
to learn a model of benign behavior, and detects vulnerable
devices by inspecting the signatures on application data. Note
that IoT devices are required to supply their corresponding
device proxies with signed checksums of the generated data.

Wang et al. [22] and Choi et al. [19] use formal graph-based
approaches for detecting faults and security breaches in IoT
devices. Wang et al. [22] use a form of a directed acyclic graph

(DAG) to represent the interactions of various entities and
events across an IoT platform. Their main concern is designing
a code instrumentation mechanism to implement the DAG and
collect provenance data to answer questions such as “How did
a device turn on at a specific time?” Choi et al. [19] also use
machine learning for detecting deviations in data transmissions
across sensors and actuators. The data is grouped using corre-
lation groups, where the groups are checked against real-time
activities. The scope of event sequences in the attack resilient
IoT architecture (Section III-C), however, is more general and
includes security-sensitive events that are carried by devices.
Serror et al. [26] use network filtering and device behavioral
rules to detect anomalies in IoT devices. As specifying rules
can be practically a limiting factor, we propose to use machine
learning with minimal user intervention to harden an IoT
subnetwork against remote attackers.

Blockchain. Some of the previous works proposed the use
of the block-chain technology for developing access control
in vast IoT networks [27]–[35]. Blockchain technologies use
cryptographic methods for providing decentralized verification
across a distrusting network of nodes. One way to secure
IoT subnetworks is to use blockchain as an access control
scheme [28], [31]–[33], [36]. An IoT network can maintain a
cryptographically verifiable blockchain to control access to any
group of nodes in the network. For example, the blockchain
provides access control verification for nodes with long-term
membership in the network (such as management nodes). In
this work, we do not use the blockchain technology because of
the increasing cost of verifying a chain. Instead, we use short
chains of signatures to prove the provenance of IoT messages
across a small IoT subnetwork.

Program Analysis. Other approaches use program and infor-
mation flow analysis for ensuring IoT security. Soteria pro-
poses to use static analysis and model checking to make sure
if an IoT app enforces security policies correctly [37]–[41].
IoT-Guard [38], and similar systems such as [42] and [43],
use program instrumentation in IoT applications to detect
flawed applications and enforce appropriate security policies.
Balliu et al. developed a semantics framework to reason about
program interactions for IoT systems [44]. Program analysis
can complement a data-oriented model by securing vulnerable
software components that are used to operate IoT devices.
While this approach is valuable, we focus on using data to
analyze IoT device behavior. Thus, we assume that vulnerable
software components are inevitable and can be exploited
remotely.

III. MODEL AND ARCHITECTURE

This section starts by presenting the threat model (Sec-
tion III-A), an overview of the architecture (Section III-B),
and a detailed design description of the introduced components
(Section III-C).

A. Threat Model

Several components are involved from both the defense (i.e.,
the target IoT subnetwork) and the attack fronts. The defense
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front is an IoT subnetwork that includes a trusted computing
base, the physical IoT devices and their installed software, and
the network that connects the IoT devices. The IoT subnetwork
serves an application that requires several IoT devices to
cooperate and supply data. The system administrators (who
own and manage the defense front) specify policy rules for the
IoT subnetwork, which are applied according to data received
from IoT devices. The attacking front includes software for
remotely collecting reconnaissance data about the target IoT
subnetwork.

The attacker can use the reconnaissance data to locate an
available exploit and launch a remote attack. If the attacker
compromises an IoT device and modifies messages sent from
the device or redirects messages to an attacker-controlled
device, the attack has succeeded. If the attack fails, the
attacker attempts a new offense until the attack succeeds or
the attacker’s patience or resources are exhausted.

The trusted computing base consists of two components:
(1) a controller, and (2) a network of device proxies. The
controller is a system that is assumed to be secure against
known attacks, and regularly monitored for patches and se-
curity updates. The controller includes software components
and storage for collecting data from the IoT subnetwork. The
controller has full access to each IoT device and must maintain
connections with all IoT devices in the subnetwork. The
controller can manage security policies for the IoT application.
The controller also manages firewall rules across the network
or for individual IoT devices. The controller can deploy and
control device proxies. Device proxies are implemented as
software components and are deployed within the network
infrastructure of the IoT subnetwork.

B. Overview

IoT devices are exposed to vulnerabilities that enable remote
attackers to gain unauthorized privileged access. Attackers can
manipulate data generated on the compromised IoT devices
and generate and send arbitrary messages to other devices.
As discussed earlier, attackers are assumed to succeed in
compromising IoT devices that are directly accessible through
the Internet. Our approach is to (1) dynamically narrow the
interface to each IoT device with a specification restricting
access only to the trusted computing base, and (2) detect
anomalous data exchanges between IoT devices by collecting
and analyzing event data that passes through the network. In
this work, messages refer to data (containing events captured
by an IoT device), which is sent to another device in the
network.

We introduce an attack-resilient IoT architecture to achieve
the first goal. The architecture includes a controller component
that installs a software-based device proxy for each physical
IoT device. The device proxy does not reside on the IoT device
itself. All device proxies are deployed on a coordinating device
in the network. Each device proxy is set to interact with a
single physical IoT device. The corresponding IoT device is
also restricted to interact with the designated device proxy.
A message m generated by a device Pi is sent to a device
proxy V i

j . If the message is a response to an external request

(for example, from a client application), m is forwarded to the
external requesting client. m is also forwarded to the controller
component to be included as part of a device exchange dataset.
For example, consider a camera Pi in a network Nk (written
Pi ∈ Nk) that is connected to a device proxy V i

j ∈ Nk

(forming a relation). Pi is set to only communicate with V i
j

if the request is outside Nk. This restriction is applied in the
network firewall rules. All messages to and from Pi are relayed
through and cached in V i

j .
To achieve the second goal, we use an anomaly detection

system based on classification and clustering of IoT applica-
tion data. We collect and analyze events data from IoT devices.
An event represents the data produced from a function on
an IoT device. The functions of interest are the ones that
serve the application for which the IoT subnetwork operates.
For a surveillance application, an event can be a motion, a
sound, or physical observations such as sensing smoke in
the monitored environment. These events form the data that
is used to analyze network traffic for anomalies. We are
concerned with two problems. First, the system administrators
should be able to distinguish fabricated deceitful messages
generated by compromised IoT devices. Detecting fabricated
data prevents the controller from making misguided decisions.
Second, compromised IoT devices should be identified and
considered for treatment or quarantine. Detecting and treating
weak IoT devices assists in gradual healing and security
improvement of the overall IoT subnetwork.

Analyzing events data can be done in two ways. System ad-
ministrators can physically monitor the environment to collect
data, label events as benign (in case of a certain event recorded
by a benign camera) or malicious (in case of a fabricated event
generated by a compromised camera). The collected labels can
be used in a supervised learning algorithm to develop a model
of the environment and detect deviations from the model. This
method requires significant human intervention.

Our alternative is to use application data events as the basis
for modeling device behavior, saving the need for manual
labeling. During a training phase, application data are collected
in the attack resilient IoT subnetwork. The data is used to train
a binary classifier (Section IV-B). The output of the classifier
captures the occurrence of events during daily time intervals.
The normal behavior is then compared with real-time data
generated from devices. Anomalous events are detected and
used to limit devices that are suspected to be compromised.
We also introduce a clustering approach to detect anomalies
in events data. Our clustering approach employs a density-
based clustering algorithm (DBSCAN [45]), which is designed
to isolate data points that differ from the general trend.
Our experiments on a real IoT testbed (Section VII) show
that clustering application event frequencies can successfully
isolate simulated anomalies with at least 70% success rate.

Using the results of the data analysis, the attack-resilient
architecture can adjust policies on device proxies to limit or
completely isolate compromised devices, enabling it to quickly
recover from device compromises and mitigate the damage
they can cause to other devices and the IoT application. While
policy specification for IoT subnetworks is an important prob-
lem, we defer the discussion of precise policy specifications
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based on anomaly detection results for future work.

C. Attack-Resilient IoT Architecture

In this section, we define an IoT subnetwork, the controller
component of the attack resilient IoT architecture, the device
proxies, and the attack resilient IoT subnetwork. The architec-
ture is used in a data analysis model that is described later in
Section IV-B.

IoT Subnetworks. An Internet of Things subnetwork is a
digraph Gk = (Uk, Ek) where k is the subnetwork’s universal
identifier, distinguishing it from other subnetworks, Uk is its
set of nodes, Ek a set of edges (ordered pairs of distinct
nodes). Two subnetworks Gk and Gl of G are neighbors in
G if G has an edge (u, v) ∈ (Uk × Ul) ∪ (Ul × Uk). A
node in a subnetwork represents an IoT device. Nodes are
assumed to be at least connected to one subnetwork, through
an Internet protocol. The set Uk = Vk ∪ Wk of nodes in a
network may contain both proxy nodes Vk and physical nodes
Wk. An IoT subnetwork serves a particular application and
provides one or several interfaces for authenticated remote
clients. Remote clients, including possible attackers, are also
modeled as subnetworks.

The Controller. The controller (Figure 2) is a software module
that is hosted on a machine in an isolated subnetwork. The
controller is only accessible by the system administrators and
accepts no incoming connections. The controller only accepts
incoming network traffic when the connection is initiated by
the controller itself. A small subnetwork Gc includes the
controller node c ∈ Vc. The subnetwork Gc is a neighbor
of all subnetworks in G that include at least one device proxy,
having permanent bidirectional connections with all device
controllers in all subnetworks. The controller can create or
destroy device proxies, receives data from device proxies, and
stores them in an isolated datastore s ∈ Vc node within the
subnetwork Gc. The controller can also query the third node
a ∈ Vc that is responsible for generating a model of events
behavior according to the data in s. Bidirectional edges in Ec

connect all the three nodes c, s, and a.
The controller receives analysis results from a, consults a

policy file, and applies the appropriate policy. The policies are
rules that affect device proxies. A policy can be either

1) terminate (or launch) device proxy x,
2) connect (or disconnect) device proxy x to (or from) IoT

device d,
3) enable (or disable) remote traffic from IoT device d

connected to device proxy x, or
4) limit remote access to an IoT device d connected to

proxy x to a set of remote clients.
The policy file is a table of conditional statements that indicate
the application of policies according to the results of data
analysis in a. Because the controller depends on the analysis
of an anomaly detection method (described in Section IV-B),
false positives can occur. Hence, the controller should only
limit access to a suspicious IoT device. The limitation can
include disconnecting some of the remote clients. The policy is
applied through the device proxy. When the controller has high

Cloud

Router/Firewall

Signatrures

Sequences

Controller 
Interface

IoT Devices Proxies

Fig. 2: Implementation of the attack resilient IoT architecture
using AWS EC2 instances and a modified Linux machine as
the firewall router.

confidence about the suspicious device being compromised,
a more restrictive policy can be applied. For example, the
corresponding device proxy is terminated. In this case, the
device can no longer interact with any other device in the
subnetwork.

Device Proxies. A device proxy is a software module that
is installed on a virtual machine within an IoT subnetwork
Gk. The purpose of using device proxies is to isolate physical
IoT devices by narrowing their interfaces with remote clients.
Also, device proxies ensure that events data, as generated
on IoT devices, are properly reported to the controller. Each
device proxy is represented as a node in Uk. Each device
proxy is launched on a separate virtual machine hosted on a
physical machine (such as a router). The controller sets each
device proxy u to connect to a device x ∈ Ul via an edge
(u, x), making Gl and Gk neighbors. Note that to isolate
a device proxy from network scans and local area network
attacks (such as ARP poisoning attacks [46]), device proxies
and their corresponding physical devices are in separate IoT
subnetworks.

Attack-Resilient IoT Subnetwork. An attack-resilient IoT
subnetwork A is an IoT subnetwork that (1) has device proxies
connected to every physical IoT device, that is, |VA| = |WA|,
and ∀x ∈ WA, ∃u ∈ VA : (u, x) ∈ EA, and (2) contains an
incomplete bipartite subgraph between the two node subsets
VA and WA, with edges E∗A ⊂ EA that only connect VA
and WA. The attack resilient IoT subnetwork transmits normal
device messages, miscellaneous network protocol messages,
and specially signed messages that carry event data headed
towards the controller node. The network structure is dynamic
and is managed by the controller node. Nodes and edges are
added and removed according to the policy file maintained by
the controller node (described above).

The data analyzed from individual devices (Section IV-B)
are used by the attack-resilient IoT subnetwork as the bases
of a defense strategy. The defense uses the model developed
from benign sensor activities to detect anomalies in the sensor
data. When an event sequence S (defined precisely below)
arrives, the controller compares S with the normal data. If
S is detected to be an anomaly, the controller increments a
counter for the physical device d? from which S originated.
The counter is used to decide if the physical device d? should
be restricted. When the controller decides that d? may have
been compromised, one of the defense policies (described
earlier) can be applied. This work focuses on providing the
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architecture and the data analysis models and defers the
discussion of policy design to future work.

IV. ANALYZING IOT DEVICE DATA

In this section, we describe the data needed to recognize
misbehavior of IoT devices (Section IV-A). This data com-
prises event sequences that include the events captured by IoT
devices in a time interval. After introducing events, we present
a model for analyzing event data using a binary classifier
and a clustering approach (Section IV-B) as highlighted in
Figure 3. A Support Vector Machine (SVM) classifier and a
density-based clustering algorithm are used to detect deceitful
sequences generated by devices.

A. Event Sequences

We are concerned with fabricated messages that are gen-
erated on compromised IoT devices. The fabricated messages
influence the decision by the access control system that applies
security policies to smart IoT devices (for example, locking
or unlocking smart door locks). The core problem is that the
access control system is unable to distinguish the fabricated
messages. Our approach is to enable provenance verification of
messages across IoT subnetworks by tracking message origins
as they are passed through each individual IoT device or device
proxy. For tracking messages, we define events and event
sequences and present a model for monitoring sequences of
events throughout the network.

Definition of an event. An event ai has the form (M, d, σ, α),
where i is the sequence index, M is a list of metadata
attributes for the event, d is the identifier of the device
that generated the event, σ is the operating system service
associated with the event, and α is the data supplied with the
event.

Formally, an event sequence is a tuple S = (A, δ, o) where
A = (a1, a2, . . ., an) is a sequence of events in order of time,
δ is the time interval for which the sequence was created, and
o is the device identifier representing the original creator of the
sequence. For any sequence S ∈ S = {all event sequences in
an attack resilient IoT subnetwork A}, a unique combination
of (δ, o) identifies the sequence. That is, no two sequences are
created at the same time on the same device.

Recording events. The rationale for using a time-based se-
quence model is the assumption that several correlated events
occur in temporal proximity. Events at various intervals can

SVM 
Classifier

DBSCAN

Device-generated  
sequence S

Device-generated  
sequence S

S is Deceitful 

S is Legitimate

S is noise 
S is clustered

S is Deceitful 
S is Legitimate

Fig. 3: Overview of the two approaches used to detect deceitful
device-generated sequences. SVM classifier is the Support
Vector Machine classifier and DBSCAN is the density-based
clustering algorithm.

also be correlated. Accordingly, devices record events in
sequences that are only valid during δ. All physical devices and
device proxies record, transmit and receive event sequences
across the IoT network. Each device either creates a new
sequence for each system service or receives a sequence from
another neighboring device. The device sets a timer for each
new sequence. When the timer expires, the device creates a
new sequence and waits for events (file creations) to occur.
In this model, files created for several consequent physical
movements can be recorded in a single sequence during the
lifetime of the sequence.

The relationship among events in separate sequences is
established when analyzing the sequences (Section IV-B). Note
that the duration of each time interval δ is platform-dependent
and can be arbitrary. The value of δ can significantly affect
the analysis of events as evaluated in Section VII.

Authenticity of events. An attacker can generate and transmit
sequences with arbitrary origins from compromised devices.
To prevent attackers from faking events, each device must sign
event sequences transmitted to other devices. Assume that each
device has a pair of public and secret keys (PK ,SK ) such
that the public key PK and the device identifier are registered
with the cloud controller. To prove authenticity of an event
sequence S, the device sending the sequence must sign the
message containing the event sequence. The sending device
can append S with a message authentication code (MAC).
Using a fast one-way hash function H(x), the device appends
S with y = H(S) and signs y using its secret key: e =
Enc(y)SK . The encrypted checksum, the signature e, is the
message authentication code for S. A device proxy receives
the signed message from the corresponding IoT device and
forwards it to the controller. Note that the attack resilient IoT
architecture may destroy a device proxy and replace it with a
different proxy. Further, an attacker may send messages from
a compromised device to another IoT device and convince
the recipient device to send the message through its proxy.
Preventing this attack requires authenticating the proxy that
forwards the message. Thus, when a recipient device receives
S, the device appends a new subsequence of events to S1,
giving a new (3-tuple) event sequence S∗. To authenticate the
additional events in S∗, a new MAC is appended to S∗ which
includes the previous signature e and the checksum of the
newly added subsequence: e∗ = Enc(e‖H(S∗))SK∗ (where
SK ∗ is the secret key for the recipient of S).

B. Event Anomalies

Our work is distinguished from previous work since we
use application data to detect and analyze anomalies (Sec-
tion III-B). In contrast with network traffic data, application
data is specific and is challenging to generalize. Our learning
model is based on the observation that (1) IoT application data
is temporal as captured by event sequences, and (2) attackers
generate fabricated events at particular times. Thus applica-
tion data anomalies can be captured by isolating fabricated
sequences either based on the probability of occurrence or
with respect to the relationship with benign data points. Here,
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we present a general definition of anomaly followed by two
models to distinguish benign and anomalous behaviors.

Anomaly Model. Let f(Si) ∈ IR be a characterization
function that receives a sequence Si. The sequence Si is an
anomaly if

f(Si) ≤ τ,

where τ is a generic threshold parameter. The function f is
generically defined to accommodate the two anomaly detection
techniques that we use for our architecture. The rationale for
using two models is to compare the effectiveness of each one
in increasing the performance of the anomaly detection process
as described next.

Classification Approach. First, we use a binary classifier
(similar to [47]) to decide if a sequence should occur during
fixed time intervals. Fixed time intervals are specified for each
sequence of events in the attack resilient IoT architecture. The
classifier’s input has two features: an event sequence and a
time interval. The output of the classifier is 1 if the dataset
supports that the event sequence is expected to occur during
the given time interval, and 0 otherwise. A rigid anomaly
detection scheme would directly use the output of the classifier
to decide if an event is anomalous by setting τ = 0. Instead,
we use a flexible anomaly detection scheme by using the
posterior probabilities of the classifier’s output [48]. We train
the classifier with a dataset D of benign event sequences. The
training results in a model M(D). In real time, the sequences
generated from IoT devices are labeled using the learned
model. To detect if a sequence is an anomaly, we set the value
of the function f to the posterior probability obtained from the
classifier:

f(Si) = P (y = a|Si),

where y is the output of the classifier based on the model
M(D), and 0 ≤ a ≤ 1. The choice of a depends on the
expectation that the event occurs. Here, a low probability
that Si is expected to occur during a specific time interval
determines a low value of f . The sequence is labeled as
anomaly when f falls below τ .

Clustering Approach. We also cluster the observed sequences
using a density-based clustering approach [45]. The reason for
using density-based clustering is to isolate random behavior
by attackers in generating event sequences. In a density-
based clustering method, noise is defined as data points that
do not belong to any clusters. We use the definition of
noise in density-based clustering to detect anomalies. Note
that we do not base the anomaly detection decision on data
attributes from within the IoT devices. That is because such
attributes can be fabricated on compromised devices. We also
require that IoT devices be memory-less. In the attack-resilient
architecture, the IoT device communication history is only
cached on device proxies. Thus, attackers cannot learn the
previous communication patterns. As a result, the number of
events and the time interval of sequences are arbitrary and
may appear as noise.

To form the clustering problem, a quantitative value for an
event sequence is defined. Recall from Section IV-A that for
an event sequence Si, |A| is the number of events recorded

from device d? during the interval δ. Let xi be the pair
(d?, |A|/m(δ)), where m(δ) is the length of the time interval
δ. Cluster first on d? (sort by physical device), then on the
event frequencies |A|/m(δ) (hierarchical clustering).

The input X = {x1, x2, . . ., xn} to the clustering algorithm
is a set of event sequence pairs for a single IoT subnetwork
application. Assume X is collected during a time interval
with a negligible probability of attack. The event sequences
are generated on multiple devices and a diverse set of time
intervals. When the input X is clustered, most sequences are
expected to join a cluster. The remaining noise, which is
assumed to contain anomalies, is not clustered. We modify the
density-based clustering to include additional auxiliary single-
member clusters for each unclustered point. Let C denote the
cluster set containing the sequence Si pair xi, computed using
a density-based clustering algorithm. Then the value of the
characterization function f(Si) is computed as the cardinality
of the cluster set C relative to the total number of data points
(pairs):

f(Si) =
|C|
n
.

A low value of f(Si) either indicates that xi is noise or xi
has joined a sparse cluster. As anomalies are assumed to be
the minority events, the function f is expected to detect them.

Handling Cluster Noise. A challenge in detecting the anoma-
lies using the clustering approach is with the noise in the
training dataset of the normal behavior. To detect anomalous
behavior as noise, the already existing noise in the normal
behavior can result in a high rate of false positives. To remedy
this problem, the noise from the normal behavior is separated
from the clustered behavior. In real time, if an event sequence
is close to a cluster, the sequence is marked as normal.
Otherwise, if the sequence is noise, the controller attempts
to find a near neighbor in the noisy normal data. If a close
enough normal noise data point is detected, the sequence is
marked as normal. Otherwise, the sequence is an anomaly.

V. SECURITY ANALYSIS

In this section, the security of the proposed architecture and
data analysis model is presented. The mitigated attacks and
security limitations are discussed.

A. Mitigated Attacks

Remote attackers are the primary concern of this work. A
remote exploitation attack vector exists because of the usability
of the target IoT subnetwork. Enabling remote clients requires
allowing remote traffic to reach the IoT devices in the target
subnetwork. Thus, the legitimate user can connect directly to
an IoT device from any IP address using a client application.
Our model does not restrict the access of remote clients.
Instead, the network traffic to each IoT device is restricted
to a device proxy that is created in a neighboring subnetwork
(as virtual machines).

Although the traffic is restricted, remote attackers can gain
access to a vulnerable IoT device. The remote access can be
through a victim application that accepts attacker manipula-
tions, for example, through payloads. A more powerful remote
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access could be through gaining escalated privileges, allowing
for a stable connection with the victim device.

The data analysis model is used to find IoT devices that
are compromised through remote exploitation attacks. The
data model relies on events that are generated on each IoT
device. The attack resilient architecture requires that an event
sequence S be signed by all devices that transmit S. The
remote attacker should continue signing events even though
they might be fabricated. Otherwise, the controller does not
accept an unsigned S or one with an unknown key. This
signing protocol allows the resilient architecture to check the
origin of sequences.

Stealth Attacker. The remote exploitation attacker can remain
in stealth mode, collect data from the compromised IoT
device, and imitate the victim to attack the classifier or the
clustering algorithms that are used to predict device behavior.
The objective of this attack imitating the victim is to supply
the controller with fake event contents (for example, replacing
the image of an event on a camera with a fake one). This type
of attack can occur in two ways. One is to use the victim
device itself as the storage for event behavior. The other way
is to record each normal event sequence that is generated by
the victim and transmit it back to a more powerful device that
is controlled by the attacker.

The use of device proxies allows us to mitigate the first
type by limiting the storage of the actual IoT device to the
minimum, essentially disabling the accumulation of data on
the device, and using device proxies as a cache for the data,
in the case of generating many events within a short time
interval. This approach does not eliminate the data collection
on the device completely. However, it will severely limit the
capability of the attacker to build a complete image of the
victim’s behavior.

The second type of attack is eliminated by the data analysis
approach. The advantage of the controller on the attacker is
the existence of an abundance of data from all connected IoT
devices. This data is collected in a controlled environment, for
example, by disabling remote access completely. The data,
as demonstrated in the experiments of Section VII, enables
the anomaly detection to detect if a device is suspicious or
malicious quickly. In this case, the controller instructs the
device proxy to limit remote access to the device (for example,
disabling outbound traffic). To overcome this mitigation, the
attacker may avoid interfering with the activity of the device,
allowing it to behave normally. The attacker will only send a
copy of the collected events back to an attacker-controlled
machine. This attack can be mitigated by learning the le-
gitimate client’s behavior or IP address and comparing the
real-time connection’s behavior to the learned behavior. Also,
strict policies can mitigate the attack, for example, by limiting
connection to a single client application. Further investigation
of a complete solution to this problem is left for future work.

B. Limitations

The resilient architecture depends on the trustworthiness of
device proxies, and the controller. Attackers with full knowl-
edge of the target environment may simulate the behavior

of IoT devices with a predictive model without transmitting
anomalous data from a compromised device. The model
presented in this work does not provide an immediate solution
to such an attack.

One important challenge in using data input from multiple
devices is establishing trust amongst the devices. We assume
this can be done before the system is exposed, and that devices
can establish secure key pairs with the controller. This may
not be possible in typical deployments. One approach to estab-
lishing trust is to use blockchain technologies, as proposed by
Fortino et al., to maintain a record that certifies the reputation
capital of each device [49]. This use of blockchain technology
can further aid the process of collecting and analyzing reliable
data from cooperating devices.

We assume that the model of benign behavior is developed
during a period that can be guaranteed to be free of attacks, but
otherwise closely resembles normal use. This may be difficult
to achieve in practice. Our anomaly detection scheme may
have a decreased success rate when the benign behavior of IoT
devices differs substantially from that of the training period.
This requires retraining the anomaly detection system to
represent the new behavior. Detecting the change in the benign
behavior can be challenging and requires careful consideration
since it opens the design to poisoning attacks where an attacker
can inject data that corrupts the trained model.

Our model could also be extended using the concept of
causal reasoning [50] to further enhance the detection strength
by the controller. In this scenario, an attacker with full
knowledge of a subset of the devices, potentially with physical
access to them, can be detected by using data from other
cooperating devices. For example, a causal relationship graph
can be constructed to represent various conclusions using the
sequences of events generated by our architecture. Once a
pattern of causal relations is learned, the attacker with a full
mimicking capability on a device A can still be detected,
when a cooperating trustworthy device B generates an event
subsequence that contradicts the one generated at A.

VI. IMPLEMENTATION

This section provides the implementation details of the
attack-resilient IoT architecture. The prototype uses Raspberry
Pi 4 as the hardware module for IoT devices. The required
software modifications are minimal and require no changes
to the operating system kernel or the network software stack.
Apache web server, MySQL database, and AWS Elastic Cloud
Computing (EC2) are used to develop the required software
components. The software components include a sequence
manager for the IoT device, the controller, which is imple-
mented on the Amazon Web Services cloud, and a proxy
service that is installed on each device proxy. The architecture
also includes a signature store and a data store. The signature
store is a relational database table of device IP, device MAC
address, and the corresponding binary representation of the
public key for the device. The data store is a relational database
table with a table entry for each sequence generated.

The sequence manager receives commands from the device
proxy, monitors a set of services on the IoT device, records
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sequences, and signs each sequence and sends it to the
device proxy. The sequence manager is a daemon process that
automatically launches when the IoT device boots. The threat
model does not require trusting the sequence manager. When
the attacker tampers with a victim device, the attacker either
stops the process and prevents it from transmitting data or
leaves the sequence manager to normally transmit fabricated
sequences.

The firewall rules are set and managed by the controller. A
basic set of firewall rules are applied on the network router
that connects the physical IoT devices to the Internet. The
router restricts each IoT physical device to only communicate
with the corresponding proxy by setting the inbound and
outbound rules. The firewall rules enforce restrictions on the
MAC address of the IoT device. The attacker can forge the
MAC address of a victim IoT device. Forging MAC addresses
is not useful since it prevents the victim from communicating
to the device proxy. The only benefit is in causing a denial of
service, which is not the concern of this work. The router is
implemented as a regular Linux machine. The firewall rules
are applied as iptables rules. These rules are updated directly
by the controller.

Although firewall rules limit interactions with the IoT
devices, remote attackers can still find ways to exploit a
target IoT device. Suppose that a target IoT device u1 is in
a subnetwork G1. A neighboring subnetwork G2 has regular
machines that are accessible through the Internet with an open
traffic rule. If a machine u2 in G2 is compromised by the
attacker, then the attacker might access the subnetwork G1. u1
is behind the firewall, but the attacker might find vulnerabilities
in the router and gain access to u1. The attacker might also
gain access to u1 by sending malicious requests that pass
through the corresponding device proxy. The assumption here
is that device proxies are trusted, but we do not trust the
requests that are processed through device proxies.

The IoT devices send sequences through the router to device
proxies (Steps 1 and 2 in Figure 4). Each device proxy runs a
web server. Upon receiving a sequence as a request, the web
server modifies the request to include a signature and forwards
the request to the controller (Step 3). The proxy just signs this

Router

Client
Request

Denied

AWS Cloud

Controller Signature 
Store

Data Store

Proxy 1

IoT 
Device 2

Proxy 2

1: SDK 2: SDK

3: {SDK}PK

4: Verify{SDK}PK

5: Store
{SDK}PK

IoT 
Device 1

Fig. 4: An implementation of the resilient architecture. The
implementation uses Elastic Computing Cloud (EC2) ma-
chines in AWS. Rectangles show EC2 machines and shaded
shapes are trusted components. Each IoT device communicates
through a distinct proxy machine. Requests are only routed to
and from the designated proxy machine. SDK is a sequence
signed by the device key DK. {SDK}PK is a sequence, which
is signed by the proxy.

message with its own key, and forwards it to the controller,
which verifies both signatures (Step 4). The signatures are
generated using Python’s cryptography library [51].

The controller has a web server interface that interacts with
routers and device proxies. Device proxies send sequences
asynchronously to the controller. The controller receives each
request and sends the request to a temporary database table for
verifying the signature. A thread pool checks the signatures on
the sequences and sends the verified signatures to the signature
store database. A MySQL database is used to handle the store
requests. The sequences are also recorded (Step 5) to train the
machine learning models.

Device proxies are created by the controller. Each device
proxy is a virtual machine with a predefined machine image
that has a copy of the web-based proxy as described above. For
implementation simplicity, AWS EC2 is used to create virtual
machines for device proxies. To reduce network round trip
time, virtual machines can be created internally on a VMware
ESX server.

VII. EVALUATION OF ANOMALY DETECTION

We evaluate the two anomaly detection methods using
benign data generated in an IoT testbed. The attacker data
is simulated based on two attack strategies that have different
views of the target environment. The classifier is trained on
the benign training set and is evaluated using the benign test
set and the attacker test set. With the benign test set, the
classifier achieves high precision and recall. With the attacker
test set, the classifier has low recall in many cases (below 0.5).
Depending on the behavior of the attacker and the length of
the interval in which sequences are generated, the classifier
produces different precision and recall values. The clustering
method is evaluated using the percentage of noise generated
when clustering attack data points. The clustering algorithm
has an average success rate of detecting 76% of attacker-
generated messages. In the worst case, the clustering method
marks 70% of attacker points as noise, thereby detecting
them as anomalies. In the best case, the controller marks
91% of attacker points as noise. The presented models may
suit different application and data settings and the choice of
parameters affects the final results. In practical settings, system
administrators can adjust the system parameters to produce the
best results.

A. Data Collection

The experimental data was collected from a testbed in two
physically separate locations: a home office and a research lab.
For the home office, three sensors were installed: an office
room, the server and storage room, and the corridor. A single
sensor was installed in the research lab. The sensors capture
pictures of any moving objects. The hardware for sensors
is Raspberry Pi 4 machines with an internal camera module
attached to the board. Each machine has four cores and 4 GB
of memory and a 32 GB of SD storage card. Each sensor runs
an Ubuntu distribution and the motion1 open-source library
for detecting motion using the camera.

1https://motion-project.github.io/

https://motion-project.github.io/
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Fig. 5: Hourly frequency of motions for each sensor.
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Fig. 6: Frequency histogram for each sensor with unified four-
minute intervals (m(δ) = 4). Each interval corresponds to an
event sequence. The y-axis shows the normalized frequency
of sequences. N is the normalized frequency.

Sensors are labeled vi for 0 ≤ i ≤ 3 in the order mentioned
previously. The data was collected 24 hours a day for about
30 days, generating approximately 2500 data points. Some
of the sensors were installed during the entire data collection
period and some with shorter periods of time. Because of the
experimental nature of the testbed and the changes needed in
the location of the sensors, noisy motions due to changing the
location were detected. Also, some motions were not captured
by the sensors because they were occasionally turned off.

The activity generated on the sensors corresponds to less
than ten people. The sensor’s view frame was facing the
entrance in all locations but with arbitrary calibration. Further,
the corridor sensor was not able to detect far away motion (its
range is limited to about 15 meters). However, motion of closer
objects were instantly recorded on the sensor’s internal storage
with the file metadata capturing the exact time of the motion.
The sensors also sometimes mistakenly interpreted changes in
the lighting as a movement (for example, detecting the natural
light appearing from the window).

The collected data serves as the training data for modeling
normal (benign) behavior in the monitored environment. Fig-
ure 5 shows the frequency of events within one-hour intervals
for each sensor. The figure shows a clear pattern of activity
according to the time of day. Figure 6 shows the frequency
histogram of the event sequences with length ≤ 5 in four-
minute intervals. The data for Figure 6 provides a key insight
that underlies the application data analysis in this work. The
assumption is that the attacker misses the expected size of
event sequence lengths, and the event sequences provided by
the attacker are clustered as noise.

B. Design of the Experiments

The collected data is assumed to be benign with no mali-
cious activity. No device was compromised during the exper-
iments, and all the users having access to the cameras were
trustworthy. Thus, the data is used as a basis for the category of
benign activities. For experimenting with fabricated messages,
we present two attacker strategies. Each strategy uses a model
to generate fabricated messages.

Naı̈ve Random Attacker. The random attacker is the simplest
attacker that is assumed to have a minimal view of the target
IoT subnetwork. The attacker knows the IP addresses of a
subset of the sensors and the purpose of the application (e.g.,
surveillance). The attacker does not have prior knowledge of
the normal behavior of the sensors. The attacker knows the
type of the physical environment in which the IoT subnetwork
is installed (e.g., a home office). The attacker’s goal is to pol-
lute the data collected from sensors and influence the decisions
made by a high privilege IoT subnetwork that interacts with
the subnetwork of sensors. The attacker can gain remote access
to a target physical device by using a vulnerable service on
the target. The attacker can disable reporting a typical event
sequence, modify a normal event sequence to include less
or more events, or generate fabricated event sequences when
there are no actual events captured by the compromised sensor.

The simulation of a random attacker tests the attacker
techniques mentioned earlier. The simulation starts assuming
a trained classifier and a clustered dataset with a large dataset
of the benign behavior. The simulation measures the attacker’s
success by generating attacking sequences during 24 hours.
The time at which event sequences are generated is chosen
randomly. Also, the number of events reported in a single
sequence is chosen randomly.

Mimicry Attacker. The mimicry attacker can leverage recon-
naissance data in an attempt to mimic the behavior of benign
nodes. This attacker uses an accurate estimation of file size and
a better estimation of sequence length. In particular, we use
statistics collected from the dataset of each device to simulate
the estimated average file size associated with each event
sequence. We also limit the random number generator for the
attacker to the maximum and minimum sequence length from
the actual dataset. The assumption here is that the attacker
is able to collect more reconnaissance data, for example, by
spending more time in stealth mode on the compromised
device, but is not able to build its own accurate model of
the subnetwork so sends random data within the observed
parameters.

C. Classification Results

The results are displayed for each IoT device in the testbed
(Section VII-A). The three home office devices are referred to
as v0 for the office room, v1 for the server and storage room,
and v2 for the corridor. The lab device is referred to as v3.

The results of the experiments show the performance of
the anomaly detection methodology using various parameters.



11

We use precision (positive predictive value) P and recall
(sensitivity) R to measure the accuracy of the classifier:

P =
Tp

Tp + Fp
, R =

Tp
Tp + Fn

,

where T/F denote true/false and p/n denote positive/negative.
We first test the relevant features that could be used to capture
attacker behavior accurately. We use a support vector machine
(SVM) classifier to classify the input with the output values
Y = 1 indicating an event was reported and Y = 0 indicating
no event was reported. The input includes the hour of an event
sequence, the average time difference between any two events
in the sequence, and the average size of the event files in the
sequence.

We measure the performance of both the attacker and the
training dataset using the trained classifier. A shuffled 30% of
the training dataset is used as a test set. The attacker-generated
dataset is also used as a test dataset for the classifier. The
attacker is successful when both precision and recall values
are high. That is, if precision and recall are high, the attacker
can convince the controller that the compromised device is
behaving normally. The attacker’s benefit is in manipulating
the contents of the event towards malicious intents. Detecting
manipulations of the event contents are out of the scope of
this work.

Feature Selection. Tables I and II summarize the results of
the classifier’s performance using the training data compared
with data generated by the naı̈ve random attacker. In Table I,
the results are reported with the input to SVM including the
file size averages. Here, both the precision and recall values
are high enough to provide encouragement that the proposed
defense could be made to work in practice. In Table II, the
file size averages were excluded from the classifier for both
the training and attacker data. Here, the attacker fails with
devices v1 and v3 but has high precision with the other two
while keeping a low recall. This indicates that if file sizes are
not used to train the classifier, the attacker suffers from a high
false negative rate. Based on these results, we proceed with
only training the metadata of events.

Detection Accuracy. Figure 8 shows the performance of the
classifier using the training and the mimicry attacker. Recall
that the mimicry attacker only speculates about the number of
events reported within a sequence. The mimicry attacker has
an accurate estimate of the minimum and the maximum num-
ber of events reported within a sequence and the maximum and
minimum values for the average distance between two events.
These estimates are supplied directly from the training dataset.
The dataset for the mimicry attacker might be challenging to
obtain. However, simulating this behavior aims to stress test
the classification approach by giving considerable advantage
to the attacker.

The results show the computed precision and recall for each
device for both the training dataset and the attacker-generated
dataset using various event sequence interval lengths. The
bars show precision and recall for both the naı̈ve and the
mimicry datasets in each figure. Note that the classifier has
a high true positive and low false positive for the training

M Training Attack
Precision Recall Precision Recall

v0 0.904 0.89 0.911 0.954
v1 0.948 0.945 0.909 0.953
v2 0.817 0.797 0.898 0.948
v3 0.927 0.921 0.918 0.958

TABLE I: Results of attacker data and training data classifier
accuracy including file size estimation. Each vi refers to an
IoT device in the testbed (defined earlier)

M Training Attack
Precision Recall Precision Recall

v0 0.883 0.877 0.854 0.048
v1 0.938 0.934 0.002 0.047
v2 0.788 0.771 0.898 0.104
v3 0.927 0.921 0.003 0.055

TABLE II: Results of attacker data and training data classifier
accuracy excluding file size estimation.

datasets of all devices. The attacker generated data has the best
classifier performance in v0 and v2. Even with the achieved
performance, the attacker data classifier performance still has
a relatively low recall value. In this simulation, we also tested
the accuracy of the classifier by modifying the intervals during
which the sequences are captured. The x-axis shows the length
of sequence intervals in minutes. Longer sequences show
better attacker performance by achieving higher recall values.
This is a natural consequence as longer sequences are likely
to capture the output value of Y = 1.

The naı̈ve random attacker (with no realistic estimation of
the input data) has a lower success rate compared to the
mimicry attacker (Figure 7). For example, in the dataset of the
first IoT device, the mimicry attacker has a considerably high
precision and recall. In contrast the naı̈ve random attacker has
low precision and recall. This indicates that the naı̈ve random
attacker performs poorly in predicting the benign behavior of
the compromised IoT device.

D. Clustering Results

The clustering-based anomaly detection uses the density-
based clustering algorithm DBSCAN [45]. This clustering
algorithm attempts to find core samples of high density and
clusters other data points accordingly. The algorithm also finds
noise data points that do not belong to any cluster. Two
parameters influence the results of the algorithm: the radius ε
used to cluster points, and the minimum number m of samples
within the radius ε to form a cluster. In our experiments,
Euclidean distance was used to measure the distances.

We first tabulate the ratio of data points found to be noise
by DBSCAN in Table III. In this table, for each interval length
of m(δ), the dataset is clustered and the number of noise data
points divided by the number of clustered points is computed.
Ideally, the clustering algorithm should return no noise. The
chosen parameters of DBSCAN for the experiments are ε =
0.5 and m = 3. The results demonstrate the false positive
rates. These results are subject to change based on different
parameter selections and different datasets.
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Fig. 7: Performance of the classifier using the training dataset compared to naı̈ve random attacker-generated sequences. P
stands for precision, and R stands for recall. The y-axis shows the value of the metric.

2 4 6 10
Interval Length

0.0

0.2

0.4

0.6

0.8
0.913 0.89 0.862 0.865

0.623

0.712
0.763 0.794

0.903 0.88 0.852 0.849

0.391

0.6
0.664

0.709

P Training
P Attacker
R Training
R Attacker

(a) Office (v0)

2 4 6 10
Interval Length

0.00

0.25

0.50

0.75

1.00 0.924 0.919 0.914 0.904

0.812
0.722

0.68

0.778

0.961
0.911 0.905 0.891

0.251
0.206

0.423

0.655

P Training
P Attacker
R Training
R Attacker

(b) Server Room (v1)

2 4 6 10
Interval Length

0.0

0.2

0.4

0.6

0.8
0.868

0.772 0.794 0.774
0.7

0.767 0.774
0.840.842

0.764 0.771 0.772

0.464

0.67 0.675

0.81

P Training
P Attacker
R Training
R Attacker

(c) Corridor (v2)

2 4 6 10
Interval Length

0.0

0.2

0.4

0.6

0.8
0.93 0.907 0.882 0.903

0.061

0.692 0.723
0.793

0.924 0.896 0.884 0.905

0.247

0.568 0.599

0.717

P Training
P Attacker
R Training
R Attacker

(d) Lab (v3)

Fig. 8: Performance of the classifier using the training dataset compared to mimicry attacker-generated sequences. P stands for
precision, and R stands for recall. The y-axis shows the value of the metric.

Interval Length Machine
v0 v1 v2 v3

2 0.104 0.036 0.136 0.058
4 0.174 0.067 0.216 0.098
6 0.208 0.094 0.273 0.118

10 0.282 0.122 0.356 0.157

TABLE III: Result of density-based clustering (capturing false
positives) with varying interval lengths. The values show the
ratio of number of noise points to number of clustered points
in the dataset. The ideal ratio is 0.0.

To measure the performance of anomaly detection on the
collected dataset, we report the fraction of attacker sequences
that are detected as anomalies. In the simulations, the threshold
T = 1/n (size of a single-point cluster over the total number
of data points) is used, which only considers the noise as
anomalies. Algorithm 1 is used to simulate the naive attacker
behavior. Let X be a matrix of inputs (implemented as a list)
to the clustering algorithm with each row having two columns:
the interval of the sequence, and the number of events in the
sequence. Let I be the set of all intervals, and fl and fh
be the minimum and maximum attacker estimations of the
number of events in all sequences. Let random(a, b) be a
function that generates a random data point object with a value
in [a, b]. The function DBSCAN(X) generates a list of labels L
by executing the DBSCAN clustering algorithm on the input
set X . noise(p) marks the attacker data point p as a noise
point. A label with a negative value marks a noise point.

Algorithm 1 essentially reclusters each attacker-generated
data point with the rest of the training dataset. The ratios

Algorithm 1 Compute the performance of clustering-based
anomaly detection.

Require: X , I , fl, fh
1: for i ∈ I do
2: p← random(fl, fh)
3: push(X , (i, p))
4: L← DBSCAN(X)
5: l← pop(L)
6: if l < 0 then
7: noise(p)
8: push(P, p)
9: end if

10: pop(X)
11: end for
12: return P

of the number of noise points to the number of data points
generated by the attacker are demonstrated in Table IV. Higher
values indicate better anomaly detection performance. Note
that the minimum achieved noise ratio is 0.7; that is, 70% of
the attacker generated data points are marked as noise points.
The performance of the mimicry attacker is slightly better than
that of the naive random attacker for all devices in all intervals.

Comparison of Accuracy with Existing Works. We compare
the detection performance of our model with 6thsense [20], a
context-aware IoT intrusion detection system. The objective
of 6thsense is to analyze user behavior and detect intrusions
with the aid of an IoT network. 6thsense uses sensor-level
detection as opposed to application-level detection. It finds
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Interval Length Machine (Mimicry Random) Machine (Naive Random)
v0 v1 v2 v3 v0 v1 v2 v3

2 0.701 0.739 0.73 0.711 0.892 0.908 0.882 0.898
4 0.772 0.788 0.749 0.75 0.879 0.912 0.835 0.885
6 0.787 0.745 0.723 0.749 0.851 0.894 0.827 0.871

10 0.819 0.825 0.792 0.812 0.842 0.884 0.803 0.857

TABLE IV: Result of using density-based clusters to detect anomalies from the naive random and mimicry random attacker-
generated data. The results show the fraction of attacker sequences that are marked as anomalies.

Interval length (hours) Attack Data Points Verification Time (s) Time Per Sequence (ms)

2 5040 112.30 22
4 2520 27.76 11
6 1680 11.98 7
10 1166 4.56 4

TABLE V: Time to cluster attack points over the entire data sets with various interval lengths.

sensor activity that is malicious as a result of executing
malware. We use the F -score to compare the performance
of our model to that of 6thsense:

F = 2× (P ×R)
(P +R)

.

The value of F ranges from 0 to 1, with F = 1 indicating
the best value. Our model achieves an F -score of 0.74–0.94
(on average, 0.87) for the random attacker, while achieving
0.76–0.94 (on average, 0.86) for the mimicry attacker. This
compares favorably with 6thsense, which achieves (depending
on the model parameters) a F -score of 0.4615–0.9899 (on
average, 0.8040) for their Markov Chain based model. For
their Naive Bayes model, the F -score range is 0.7615–0.8235
(on average, 0.7859). The performance of our models can
potentially be improved by using a feature-rich dataset from
the underlying IoT sensors. Coupled with the application-level
dataset, the accuracy of the models would likely be improved.

We compared our results previous works [9], [11], [21]
using the metrics from Barrera et al. [21], true positive rate
(TPR) and false positive rate (FPR). TPR is identical to
the recall metric used in our work. A maximum reported
FPR of 0.1% produces a TPR of 94.01%. Unfortunately, the
reported data does not enable the calculation of precision,
and consequently the F -score. However, comparing the recall
values of our work and the reported TPR, our work achieves a
minimum of 0.72 and a maximum of 0.94 recall, similar to the
results reported by Barrera et al. [21]. Meidan et al. reported
a classification accuracy of 95%–99% [9]. Bai et al. [11]
reported an accuracy of at least 74.8% and at most 80.1% when
classifying network traffic data. These results are not directly
comparable to our work. However, the achieved accuracy
values indicate a high possibility of detecting malicious traffic,
similar to the one achieved by our clustering method.

Execution Time. When detecting a deceitful attacker-
generated sequence S using clustering, the execution time
depends on the speed of the clustering algorithm to find the
best-fit cluster for S. When using a classification method,
the time depends on the speed of classifying S according to
the trained model. In both cases, the time required to detect
if a single sequence S is benign or deceitful is negligible

(running on a machine with a 6-core Intel i7 CPU and 32GB of
memory). Here, the execution time for the clustering method is
presented since it is expected to be a more expensive operation
than the classification method. The detection time involves
finding the cluster to which S belongs and detecting if S is
a noise point (Algorithm 1). To show the time required for
processing a number of sequences, we measured the time to
process the attacker sequences generated for the experiments.
Note that in our experiments, the simulations were conducted
by dividing the data by days of the week and then by intervals
of a day, then aggregating over the days of a week. That is,
each dataset measures the number of events for one interval
of a day over a week. Depending on the interval length and
the number of attack data points, the required verification time
varies. Table V shows the execution times needed to process
the entire attacker dataset for each interval. Processing a single
attacker sequence takes at most 22 milliseconds.

E. Discussion

The results for anomaly detection show the effectiveness
of using application metadata with the sensor data of the
testbed. While the anomaly detection methods are not perfect
in detecting fabricated attacker messages, given enough time,
anomaly detection methods can detect malicious behavior from
compromised devices. For example, the clustering approach
could detect 70% of data generated from the mimicry attacker
on the device v0 (when m(δ) = 2). This behavior could
be monitored by the controller to first limit interaction with
the device by enforcing more restrictive policies using the
device proxy. If the behavior persists, the controller can decide
to segregate the compromised device by using the device
signature on the sequences. Also, the controller can isolate
the data generated by the compromised device since the time
at which malicious behavior was observed.

VIII. CONCLUSION

We presented an anomaly detection method using applica-
tion data along with an architecture that uses device proxies
to control access to devices and collect the relevant data. The
architecture uses the results of the presented anomaly detection



14

method to decide which devices are compromised. Our results
demonstrate the potential feasibility of the approach through
an experimental case study using data generated from a typical
IoT subnetwork environment with no specific controls on the
environments except for the locations of the sensors. While the
results are promising, many more settings should be tested
to adjust the anomaly detection methods better and develop
a more comprehensive IoT anomaly detection system. Our
architecture could be extended to include a full policy engine
that can directly use the results of the anomaly detection
model to adjust policies across the network. One possible
application of the attack-resilient IoT architecture model is
in enabling interactions among various IoT devices belonging
to neighboring subnetworks. In this case, the exchanged data
in a controlled environment can be used to construct a model
of inter-device interactions. An anomaly detection method can
then be used to detect and isolate malicious exchanges.
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