
1

Predictability of IP Address Allocations for
Cloud Computing Platforms

Hussain M.J. Almohri, Member, IEEE, Layne T. Watson, Life Fellow, IEEE, David Evans

Abstract—One way to combat denial of service attacks on
cloud-based virtual networks is to use unpredictable network
addresses, aiming to increase attacker effort by requiring attack-
ers to search a large IP address space to find a target host. IP
address randomization is used by several moving target defenses,
relying on the assumption that it is difficult for an attacker to
predict newly allocated IP addresses. This work analyzes whether
IP addresses used by cloud providers are unpredictable enough
in practice. We analyze the IP address allocation behaviors in
two major cloud computing providers (Amazon Web Services
and Google Cloud Platform) and find that the actual entropy
provided by allocated IP addresses is limited. We evaluate several
prediction models, including a simple frequency-based model
as well as a Markov process model that produces an address
prediction set from time series data of collected IP addresses.
Our results show that simple models can reduce the search
space for allocated IP addresses and diminish the effectiveness
of randomization defenses.

Index Terms—Moving target defenses, Randomization, Net-
work security, Security management, Computer network man-
agement, Unsupervised learning

I. INTRODUCTION

Denial-of-service (DoS) attackers exhaust a target set of
services in a network to deny access to benign clients.
DoS attacks at the network, transport, or application layers
can target specific IP addresses of the services and exploit
vulnerabilities at the targeted layer. To mitigate denial of
service attacks, researchers have explored solutions such as
inspecting and filtering and identifying attack paths [1], de-
tecting anomalies [2], [3], balancing work loads [4], and
limiting request traffic [5]. In recent years, the idea of moving
target defenses such as IP address randomization has emerged
as a promising approach [6]–[10]. IP address randomization
enables moving target defense systems to mitigate DoS attacks
on hosts that are exposed to the Internet. The idea is to confuse
the attacker by periodically moving services to newly allocated
IP addresses, forcing the attacker to spend time and effort
locating the target service at a new IP address. In such systems,
registered clients may be redirected to the new addresses,
while unknown and potentially malicious clients temporarily
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lose contact with the target. For example, consider a cloud-
based network with a target server that uses a public static
IP address. The server runs a service, such as a VPN, for a
large number of clients that are authenticated a priori, and
disallows anonymous clients from using the service. To keep
potential denial of service attackers distracted from the target
server, another private machine in the same network selects a
time and requests a fresh IP address, and updates the target
server’s IP address with the fresh IP address. Then, the private
machine securely notifies authenticated clients of the new IP
address. The process of refreshing IP addresses over time is
referred to as IP randomization.

A moving target defense, such as the one proposed by
Al-Shaer et al. [11], senses that a host is being targeted by
a DoS attack, requests a new IP address from the pool of
addresses of the cloud provider, moves the targeted service to
the new IP address, and informs the legitimate clients about
the new IP address. Assuming the attacker has no control
over the communication between a benign client and the host,
the attacker must blindly search the IP address space to find
the new address of the target. Thus, the IP address of the
target service serves as a shared secret among authenticated
(legitimate) users of the service. Even though the IP address
is open to Internet traffic, attackers need to search through
a large IP address space to find the target service. That
said, the IP address space is limited and there are tools for
efficiently searching through an IP address space. To remedy
this, moving target defense systems frequently refresh the IP
address for the target service to waste the adversary’s search
effort. Maintaining an unpredictable series of IP addresses for
target servers is a core security requirement in moving target
defense systems since the adversary’s cost depends on the
expected number of attempts needed to locate the IP address
of the target.

Although previous works address design issues for building
moving target defense systems, no previous work has sys-
tematically tested the critical underlying assumption, namely
that cloud providers allocate IP addresses in a way that
is unpredictable to an adversary. The goal of this work is
to investigate the effectiveness of IP address randomization
in practice, by analyzing the predictability of IP addresses
allocated by prominent cloud computing platforms.

The main goal of this work is to design a practical attack
that could be realized given the available tools and APIs
from cloud computing providers. We consider an attacker who
is able to generate and maintain a dataset of IP addresses
and uses that dataset to predict the IP address of a moved
service. Generating the dataset should be scalable, allowing
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the attacker to collect a large fraction of available IP ad-
dresses. The attacker should model the prediction based on
observable evidence from the target network. Given recent
observations from the target network, the attacker should
generate a reasonably small set of candidate IP addresses
that is likely to include the IP address allocated to the target
service. We focus on IPv4 networks, even though IP Version
6 (IPv6) exponentially increases the address search space for
attackers [12]. Unfortunately, IPv6 is still not fully deployed,
and most services need to externally maintain support for IPv4
addresses. Further, IPv6 has numerous vulnerabilities [13] and
does not necessarily help in preventing IP address prediction
by attackers. Surprisingly, there are previous works on finding
patterns in IPv6 addresses [14], [15], while IPv4 is less
studied.

A. Contributions
The focus of this study is to investigate how widely-used

cloud computing platforms allocate IP addresses from the
perspective of an attacker who wants to predict IP address
assignments. Given partial knowledge of recent IP addresses
used by the target service, the attacker must predict the next
set of IP addresses that will be assigned. This prediction
requires narrowing the search space for IP addresses based on
knowledge gained from the target service and cloud provider.

We assume attackers have no control over the cloud com-
puting platform nor a system owner’s cloud subscription. The
attacker must predict the IP address allocation behavior based
on events in time, using tools that can retrieve data from the
cloud computing providers. The predictability of IP addresses
depends on both the application’s configuration and the cloud
provider. For example, Amazon Web Services (AWS) allows
users to allocate IP addresses in specific geographic regions,
separating virtual machine creation from IP address allocation;
Google Cloud Platform (GCP) only allocates a new address
when a new virtual machine is created. The cloud comput-
ing platforms can also enforce limits on the number of IP
addresses possessed by an account, as is the case with AWS.

As observed from the collected data, IP address allocations
in AWS and GCP are not random. We collected a large set of
IP addresses from each provider by allocating and releasing
addresses in multiple regions for both AWS and GCP. We
trained an address prediction algorithm on this data, mimicking
an attacker’s effort in overcoming IP address randomization
employed by a cloud computing user.

In summary, the contributions of this work are:
1) an overview of the available cloud technologies for IP

address randomization and the limitations and policies
imposed by major platforms (Section II) and an analysis
of the IP addresses they allocate from collecting data
from several regions over several weeks (Section V-B),

2) formal attack and defense models for understanding the
impact of IP address randomization (Section III),

3) three heuristic search algorithms for predicting IP ad-
dress segments allocated by cloud computing platforms,
including a frequency-based search and a model that
uses clustering and a Markov transition matrix (Sec-
tion IV), and

4) an open source implementation and experimental evalu-
ation of the prediction process (Section V).

The results demonstrate that popular cloud provided may
allocate addresses in predictable ways. Hence, it is important
that moving target defenses based on IP address randomization
are implemented to mitigate predictable address allocations,
and their security is evaluated in light of an adversary’s
ability to focus their search for the target IP address based
on knowledge of IP address allocation.

II. BACKGROUND AND RELATED WORK

This section provides background on moving target defenses
and an overview of cloud-based technologies that enable rapid
IP address movement. Section II-C summarizes related work
on evaluating the effectiveness of moving target defenses.

A. Moving Target Defenses

A moving target defense attempts to thwart attacks by
continually changing some property of the target on which
the attack depends. The goal is to stretch the attack’s required
time and resources through a series of changes in the network
or machine configurations, exhausting the resources available
to the attacker. Moving target defenses do not tackle specific
technical vulnerabilities that allow an attack, but defend the
system by making exploitation more difficult for all attacks
that depend on a particular property. For example, a denial
of service attack requires knowledge of the victim’s network
addresses. Moving target defenses attempt to prevent an ad-
versary from knowing those addresses. Several authors have
presented overviews and formal analyses of moving target
defenses [16]–[21]; here, the focus is limited to moving target
defenses that attempt to hide network endpoints.

Jafarian et al. proposed a method for untraceable IP address
randomization in response to the attacker’s behavior [22].
The proposed work suggested hypothesis testing as a basis
for forming the attacker’s decisions. While an interesting
approach, the aforementioned work does not address the
specific characteristics and tools available for networks in
cloud-based virtual networks. Another closely related work
by Achleitner et al. suggested a formal model of network
deception to defend against reconnaissance attacks [23]. The
proposed Reconnaissance Deception System (RDS) confuses
attackers by presenting virtual information to attackers using
software-defined networking. The goals behind RDS are sim-
ilar to those of misery digraphs [24]. A similar work uses
network simulation to achieve deception by simulating virtual
network topologies [25] and using the simulation results to
delay reconnaissance attempts. The presented work also targets
reconnaissance attempts by demonstrating the effectiveness of
such attempts when attacking address randomization in cloud.
The general shared goal is to combat reconnaissance attacks,
however, the recent work in the area does not specifically target
address randomization, nor provides a systematic modeling of
reconnaissance attacks on cloud-based virtual networks.
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B. Cloud-based Virtual Networks

A cloud computing provider, such as Amazon Web Services,
provides infrastructure as a service. The user is a person
that owns or manages an account with the cloud computing
provider. The user has access to all services available for the
account and can add, edit, or remove any service, host, or secu-
rity rule in the account. Users can thus create virtual networks
of hosts with routing rules, serving one or more applications,
with specific Internet gateways. The user’s network is referred
to as the target network throughout this work.

Cloud computing platforms provide virtualized computing
services that can be rapidly deployed for production. These
services include virtual machines created from predefined
or customized machine images, public static or ephemeral
IP addresses that could be dynamically assigned to virtual
machines, virtual networks with internal IP addresses and
routing tables, and finally security rules that span one or more
virtual machines. A virtual machine is usually created on a
physical machine in a specific geographic region. The region
of a virtual machine affects the services and the IP subnets
available to it.

Amazon Web Services. Creating a virtual machine (referred
to as an EC2 instance on Amazon Web Services) implies
joining the virtual machine in a default virtual private cloud
network with a set of predefined security rules (i.e., acces-
sibility of ports) and routing tables. After an EC2 instance
is launched, it is assigned an internal IP address as well
as an ephemeral external IP address, which is subject to
change whenever the EC2 instance is stopped (stopping an
EC2 instance lowers or suspends the due hourly charges, but
does not lose the data or its configuration).

An EC2 instance could be connected to an Internet gateway
and serve requests from outside the network, thus exposing
the host to the external network. With an elastic IP address,
AWS allows the cloud user to allocate permanent static IP
addresses that are not tied to specific EC2 instances, but are
only visible in a single geographic region. A cloud user can
choose to allocate up to five elastic IP addresses (per current
policies, with an option to request an increased limit) without
associating them with EC2 instances. When an EC2 instance
receives one of the available elastic IP addresses, it can be
stopped and restarted without changing its network address.

To efficiently randomize addresses, a network manager unit
must employ an address allocation policy that randomly selects
from a pool of elastic IP addresses, so that the connection
status of EC2 instances and their relations with the network’s
surface can be modified in real time. What facilitates this
swift movement is the range of coarse-grained and efficient
application programming interfaces (APIs) that are available to
cloud users for dynamically creating or deleting EC2 instances,
allocating or releasing elastic IP addresses, and associating
instances with elastic IP addresses.

Google Cloud Platform. Google Cloud Platform (GCP) al-
lows for creating virtual machines in a cloud account, which
are automatically given ephemeral IP addresses that are acces-
sible through ports 80 and 22 as a default setting. The newly
created virtual machine also receives an internal IP address

and can join a virtual network, similar to the mechanisms in
Amazon Web Services. The main difference is that, currently,
GCP limits static external IP addresses to a single IP address
per geographic region. API calls may be used to allocate a new
IP address for each region. However, for a diverse set of IP
addresses, the cloud user must create new virtual machines, or
stop and start existing machines hoping for fresh IP addresses
to be assigned to the corresponding virtual machines.

C. Evaluating Moving Target Defenses

Here the most closely related works are considered, which
also aim to evaluate the effectiveness of randomization in
moving target defenses.

Most of the previous work has focused on memory ad-
dresses because of the widespread deployment of address
randomization in operating systems (for example, [26]–[28]),
which prevent exploitation of memory corruption vulnera-
bilities. Address randomization or obfuscation in operating
systems is analogous to randomizing IP addresses for a
network, but uses the available space of memory addresses.
When searching for a memory vulnerability in a stack pointer,
address randomization helps, for example by randomizing the
base address of a stack frame. Randomizing IP addresses
in a cloud-based virtual network shares a similar goal with
randomizing stack addresses in operating systems. Several
works, starting with Shacham et al.’s seminal paper [29], have
evaluated the effectiveness of address randomization defenses
and found them to be vulnerable to derandomization attacks
because of the limited entropy used in selecting addresses.
Other works, such as the one by Conti et al. [30] demonstrate
techniques to predict stack addresses.

Another proposed moving target defense, instruction set
randomization [31], [32], seeks to disrupt code injection
attacks by randomizing the instruction set. Evaluations of
such defenses have also found them to be vulnerable to
derandomization attacks [33], [34].

While the approach here has a similar goal to the previous
works on evaluating the effectiveness of memory address space
and instruction set randomization in practice, the focus of
the presented work is on network address randomization and
develop novel prediction methods specific to this domain.

Other works have taken an analytical approach to eval-
uating moving target defenses based on assumptions about
adversaries and randomization. Carter et al. presented a game
theoretic approach for comparing various move scheduling
strategies for moving target defenses [35]. The work argues
that simple randomization techniques could be easily detected
by adaptive adversaries. The presented study shares a similar
hypothesis, however, the focus is on developing a data-oriented
approach for analyzing randomization using actual cloud-
based IP address allocation. In a subsequent work, Winterrose
and Carter developed a generic algorithm for modeling adap-
tive attackers [36]. They show that random defense strategies
increase uncertainty, even when the defense uses a strategy
based on a predefined model. The presented study sheds light
on the diversity of IP addresses and ways to exploit IP address
allocation to the attacker’s advantage.
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III. A MODEL OF ATTACK AND DEFENSE

This section formalizes the problem of moving target ad-
dresses in the context of cloud-based virtual networks (also
called target networks in this work) on cloud computing
systems.

A. Definitions

Assume an attacker who controls of a set A of nodes that
are connected to the Internet. The attacker is limited by the
number of controlled nodes (which is proportional to the cost
of the attack) and the time duration τ available for the attack.

The attack surface of the target network, S, is a set of
hosts (represented by their IP addresses) that are externally
exposed to the Internet. These hosts provide a port that
responds to requests from any origin address. The target
network’s topology and relation to its clients are modeled
as a connectivity digraph [24]. The connectivity digraph of
the target network with respect to the nodes reachable from
the Internet is a bipartite digraph G = (V1, V2, E), such that
S ⊂ V1, A ⊂ V2, and each v ∈ V2 is bidirectionally reachable
(using a TCP or UDP socket) from each u ∈ S. V1 is the entire
address space available to the target network for which a new
virtual host could be created and assigned, while S represents
virtual hosts created and connected to the Internet through G
and also connected to an internal connectivity digraph G∗. We
assume no host in the surface is an attacker (A ∩ S = ∅). In
reality, a host in the surface could be compromised, but we
do not consider this case.

A denial-of-service attack (or simply an attack) is repre-
sented as a binary relation R ⊂ A×S. An attack is a process
to overload software on a host u ∈ S so that u can no longer
respond to legitimate clients.

B. The Attack Model

Consider an attacker whose goal is to deny service to the
maximum number of hosts in the target network for the longest
possible duration given the available (limited) resources. The
attacker’s goal could also be to gain remote access to some
of the hosts in the target network through remote privilege
escalation. Although the nature of a remote access attack and
a denial of service attack are different, from an IP address
randomization perspective, both attacks depend on knowing
the target IP addresses for some period of time needed to carry
out the attack. Hence, defenses based on hiding and moving
IP addresses will be similarly effective.

A denial-of-service attack is performed at the application
layer or at the link layer, for example by flooding the HTTP
service with too many unsolicited requests. Attackers can
communicate with Internet gateways in the target network
and can set up experimental accounts in the target network’s
cloud computing system. The attacker is assumed to know the
target network’s cloud computing provider, and has identified
an initial set of IP addresses that serve as the Internet gateway
to the target network.

Assume that the target network’s surface changes over time
based on a proactive schedule with random time intervals. The

attacker faces a problem when the target network enlarges S.
Assuming IPv4 addresses are used in the target network, to
detect an increase in number of hosts, the simplest method
is scanning the possible IP addresses V1 (or a similarly large
subset of it), to find new hosts in S.

This blind attack method faces challenges. First, the time
when new hosts are added to S is unknown and can be selected
randomly by the server (or adjusted based on detection of
potential attacks). Second, given a policy with short time
intervals for changing S, the attacker must waste resources
blindly scanning the network because V1 could be very large.
The viable alternative to an exhaustive search is to attempt a
reconnaissance attack in preparation for launching a denial-
of-service attack. In this work, the reconnaissance effort is
realized by collecting and analyzing data from the target
network’s cloud computing provider.

The attacker’s goal is to exploit the entire surface S in the
target virtual network. As S ⊂ V1, and V1 is a large address
space, the core challenge is to reduce the search space for S to
a small subset of V1. Thus, the attacker attempts a reconnais-
sance attack by collecting data from the target network’s cloud
computing provider. As part of a reconnaissance attack, the
attacker knows a subset of s ⊂ S. Also, the attacker collects
IP addresses from the cloud computing provider by requesting
and releasing IP addresses as a normal cloud user. This data
collection forms a dataset D of IP addresses (Section IV-A).

At the start of the attack, the attacker knows s and has
collected D. At some later time, a secure system trusted by
the target network changes the surface S to S′ (The attacker
cannot tamper with or control the target network’s account
with the cloud computing provider.) S ∩ S′ is not necessarily
empty. The precise goal of the attacker is to use s and D to
predict all the values in S′.

C. The Defense Model

Target networks serve a specific audience by hosting ap-
plications that are accessible through the Internet. While
many applications use the HTTP (or the TLS-based HTTPS)
protocol, this work makes no specific assumptions on the
choice of network protocol. The target network has at least
one host for the application with no firewall rules restricting
access to the application. Cloud computing platforms provide
ways to ban unwanted IP addresses from reaching the target
network, which do not seem practical. With respect to the
defense model, we assume:

1) the target network has a total of N hosts in the surface,
2) according to a schedule, a total of N addresses are

requested from the cloud computing platform, which
replace the IP addresses for the N hosts,

3) for each change, the IP addresses are requested once and
are assigned to the N hosts,

4) the target network does not memorize the previously
allocated IP addresses, and

5) the target network does not react to denial of service
attempts.
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D. IP Address Allocation

Cloud computing providers create and control networks,
which host virtual networks created by cloud users. A cloud
computing provider serves many cloud users. A subset of
cloud users request public IP addresses either by asking for
an elastic IP address that can be associated with a virtual
machine or by creating Internet accessible virtual machines. In
both cases, a function, denoted Ω, within the cloud computing
platform allocates an IP address for the cloud user. The IP
address is reserved for the user until either the user releases
the elastic IP addresses or destroys the virtual machine for
which an IP address was allocated.

A denial-of-service attacker’s goal is to learn the behavior
of Ω and use the gained knowledge to attack a target network
in the cloud computing provider. The internal logic of Ω is
not disclosed to any user, but we can make some assumptions
about its behavior:

1) cloud computing providers assign IP addresses based on
the region in which the target network is hosted,

2) a large number of cloud users coexist in each region,
3) regions vary in the size of the set of available IP

addresses and the IP address diversity,
4) an IP address allocated for a cloud user is only released

after an explicit release request from the user, and
5) IP addresses are selected from a pool of available IP

addresses in a region via the unknown random function
Ω.

Cloud computing providers may employ various implemen-
tations of Ω which, due to IP address capacity and availability
in regions, ultimately result in address allocations with low
entropy when used in moving target defenses.

IV. ATTACK STRATEGIES

This section presents an overview of the learning and pre-
diction model, and a generic attack algorithm (Section IV-A),
followed by the design of three different heuristic search
methods for finding newly allocated IP addresses: random
(Section IV-B), frequency-based (Section IV-C), and a clus-
tering model (Section IV-D).

A. Overview

Our high-level approach is to analyze the collected data
(the learning phase) and generate predictions for the next IP
addresses in the target network’s surface S, which will be used
by the attacker to deny access to the hosts with newly allocated
IP addresses (the attack phase).

The Learning Phase. The process of learning and predicting
the next set of IP addresses by the target network is depicted
in Figure 1. The cloud computing platform uses an IP address
allocation algorithm, which employs a function Ω that outputs
an IP address, given a requesting client’s region, and other
hidden parameters that are obscure to the requesting client.
The Ω function responds to IP address allocation requests
from a data collector (which can be implemented using tools
available from the cloud computing provider, as discussed
in Section V). The IP addresses received from Ω form the

ΩData Collector

Dataset
Predictor
(Random,
Frequency,
Clustering)

Attacker

Request
Response

IP
A

dr.

IP Adr.
Data

Prediction
list

Observed IP addresses

Fig. 1: The process of predicting IP addresses in the target
network. Ω is a function used by the cloud computing provider
to allocate IP addresses. The attacker’s aim is to predict its
behavior using either a random, a frequency, or a clustering
strategy (Section IV). Observed IP addresses are recorded and
used in consequent predictions.

attacker’s dataset D, comprised of rows of N IP addresses
with the time of allocation. Each data point (referred to as
an allocation) is a set of N (distinct) IP address assignments.
Data points are recorded when the user requests N new IP
addresses, and an IP address allocation algorithm by the cloud
computing platform provides the N addresses to the user.
The collected data is used to train models for predicting IP
addresses to search in the attack.

Attack Algorithm. Algorithm 1 summarizes one attack itera-
tion. We assume each attack iteration starts immediately after
the target network finishes assigning N fresh IP addresses to
the target hosts, and the attackers goal is to find those N IP
addresses. The algorithm receives the number N of servers to
target and a prediction model, M , which is generated using
one of the attack strategies presented later.

The outer for-loop iterates in order over the predictions
made by M . The predict function returns an ordered list
of the predictions make by the model M . Each prediction is
an IP address prefix; in our experiments, we predict the first
three bytes of the IP address. The unspecified bits will be
searched by brute force. The complete function returns all
possible IP addresses that can be produced by completing the
predicted prefix. We assume the attacker can detect whether
the tried IP address belongs to the target network, and that the
attacker has no interest in attacking other networks in the same
cloud computing platform. If the attack succeeds, the attacker
records the IP address in the observation list O. The attack
completes once N IP addresses were successfully attacked or
after exhausting all the predicted prefixes. The model may
be updated based on information learned from the attack, for
example, updating the frequency counts of prefixes based on
success or failure in the attack.

Predicting Addresses. The prediction model uses the col-
lected data to form a list of predicted IP addresses, sorted
in decreasing order of priority, that are likely to be allocated
in a consequent call to the Ω function. The priority of an IP
address in a prediction list could be based on several strategies.
As depicted in Figure 1, this work investigates three strategies
for forming the prediction list. The simplest strategy is to form
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Algorithm 1 One iteration of a denial of service attack on N
hosts in the target network.

Require: N , M
1: O ← [ ]
2: for A ∈ predict(M) do
3: for A′ ∈ complete(A) do
4: attack the server on A′

5: if attack on A′ succeeded then
6: append(A′, O)
7: if |O| = N then
8: return
9: end if

10: end if
11: end for
12: end for
13: update(M) with information from this iteration

the prediction list by randomly selecting IP prefixes from the
dataset and exhaustively searching the last byte of each of
those prefixes. The random strategy (Section IV-B) gives equal
priorities to all observed prefixes in the prediction list. The
hypothesis for the random strategy is that Ω behaves semi-
randomly, subject to unknown constraints. Another strategy
is to assume the distribution of IP prefixes in the dataset
predicts the future IP addresses, so the frequency strategy
(Section IV-C) gives prediction priority to IP prefixes that
appear most frequently in the dataset. Finally, IP addresses
can have temporal relationships, that is, occurrence of one
may indicate occurrence of another in a subsequent allocation
by Ω. In a clustering strategy (Section IV-D), a Markov
transition matrix can capture such relations among clusters
of IP addresses.

In all prediction strategies the attacker receives a prediction
list and attacks the IP addresses in decreasing order of priority.
The random and frequency strategies can directly form predic-
tion lists from the dataset. The clustering strategy clusters the
dataset first and moves to generate a Markov transition matrix
(Section IV-D). Our experimental results (Section V) find that
the simple frequency-based predictions are most successful,
and substantially reduce the expected cost of the attack. The
clustering approach can be useful when Ω produces more time-
dependent IP address allocations, although our experimental
results do not find this to be common in the collected dataset.

B. Random Attacker

In this strategy, the model M for Algorithm 1 just returns
a list of all observed prefixes in random order. The rationale
for the random attacker is to make a simple and fast attack
procedure that can be realized in practice, and also depends
on the data collected for the clustering attacker.

C. Frequency Attacker

The frequency attacker draws predictions from a sorted (in
decreasing order) list of prefixes based on the frequency of
appearance in the dataset. The frequency attacker’s hypothesis
is that address prefixes with high frequency are likely to

reappear. Initially, M will return all unique prefixes (first
24-bits of IP addresses) sorted in decreasing order of their
frequencies in the dataset. After executing an attack iteration,
the model updates the frequencies for the next attack iteration.

D. Clustering Attacker

The clustering attacker executes an attack when the target
network’s surface changes. Ideally, the attacker knows the
precise timing of assigning new IP addresses to hosts in the
surface. The attack iteration predicts the set Q of IP addresses
recently assigned to the hosts using the most likely transition
from the N IP addresses that were observed in a prior (ideally,
the previous) attack iteration. To establish the most likely
transitions, the attacker clusters the dataset and produces a
Markov transition matrix as described next.

Computing Clusters. The aim is to predict the leading 24
bits of the address, leaving the last byte for a brute force
attack. The proposed method can generalize to clustering the
leading x ≤ 32 bits of the address. The clusters are expected
to represent various networks within the cloud computing
infrastructure. A centroid-based clustering scheme using the
Hausdorff distance function [37], [38] is used on the collected
data points. Consider the historical data as a time series S
of sets of IP addresses Ak =

{
Ak1, . . ., AkN

}
, where each

Aki consists of the numerical value of the leading 24 bits
of an IP address. The problem is, given A1, A2, . . ., Am,
predict the next set Am+1. Suppose that all the sets Ak,
1 ≤ k ≤ m, cluster into ` coherent clusters

{
Ci

}`
i=1

with
cluster prototypes

{
Pi

}`
i=1

. Cluster Ci is, by definition, all
(sets) Aj closer to Pi than to any other Pk 6= Pi. (In case of
a tie for the minimum distance, arbitrarily assign Aj to the
cluster with the lowest index.)

The distance between two nonempty finite sets (of integers)
A and B is the Hausdorff distance ρ(A,B), defined as follows.
For integer x, define

d(x,B) = min
y∈B
|x− y|

and the directional Hausdorff distance

H(A,B) = max
x∈A

d(x,B).

The Hausdorff distance (which is a metric in the sense of
topology) is then

ρ(A,B) = H(A,B) +H(B,A).

The prototype Pk for cluster Ck has the property that

Pk ∈ Ck and
∑
A∈Ck

ρ(Pk,A) = min
B∈Ck

∑
A∈Ck

ρ(B,A).

The clustering can be done using a standard iterative k-
means procedure. During the clustering, ` = b0.05mc clusters
are created, where m is the number of IP address sets. The
value of ` can be adjusted to improve the prediction accuracy.
Initially, the available data points (sets of IP addresses) are
equally distributed among all clusters (except possibly for the
last cluster) by randomly selecting data points from the dataset
and filling up the clusters 1, 2, . . ., `. Then, the prototypes



7

are computed based on the Hausdorff distance function, as
described earlier.

Computing the Transition Matrix. The hypothesis is that
the allocation of some IP addresses precedes the allocation of
others in a repeated trend. Thus, to form a prediction set, a
Markov transition matrix is used to capture the most likely
transition of IP address sets Ak among clusters by observing
IP addresses in the time series. Using the empirical probability
in the transition matrix, one can predict the next group of
IP addresses that are likely to be used by the IP address
assignment function Ω.

Define a discrete Markov process transition matrix T , whose
(i, j) element Tij is the (empirical) probability of a transition
from a set in cluster Ci to a set in cluster Cj :

Tij =
(
number of transitions Ak → Ak+1 |

Ak ∈ Ci, Ak+1 ∈ Cj , 1 ≤ k < m
)/
`.

Thus, if Am ∈ Cr, the maximum element Trs in the rth row
of T gives the most likely transition from Am to be a set in
Cs. The entire cluster Cs is selected to predict the next IP
address set. T can be large and sparse for large datasets, so a
row-based sparse matrix storage format is used for T .

Producing Predictions. The core strength of the clustering
attacker is in using empirical probabilities of transitions among
sets of IP addresses as observed in the collected dataset.
Precisely, the most likely transition is found by first finding
the cluster CR containing the previous set of N IP addresses.
For each empirical probability TRj > τ in column j and row
R of the transition matrix T , sorted in descending order, the
attack iteration retrieves the cluster Cj . The success of the
attack is measured as the cardinality of the union of the sets
y∩Q taken over all y ∈ Cj and over all j for which TRj > τ ,
where τ is a probability threshold. For our experiments, we
use τ = 0, so the attacker eventually tries all distinct addresses
in all sets y ∈ Cj for all j, continuing until this cardinality
reaches N or the union is complete.

V. EVALUATION

The implementation of Algorithm 1 and the collected data
set are available under an open source license at https://
github.com/kussl/ClusterAttack. Next, the procedure for data
collection is described. Section V-B presents an analysis of the
collected IP address data, and Section V-C reports on results
from simulated attack experiments. The effect of increasing the
size of address space by combining IP addresses from multiple
regions is studied in Section V-D. Finally, parallelized attacks
are considered in Section V-E.

A. Data Collection

Using the tools available for normal users, we used an AWS
user account and a GCP user account to allocate and record IP
addresses at fixed time intervals (the GCP user account was
created at the time of study and a previously-created AWS
account was used). Simultaneous IP allocation is limited to
a specific number in both platforms, but can be programmed
using the software development kits available from each one.

During data collection, neither AWS nor GCP generated any
security alerts nor did they limit the data collection scripts
(developed for this study) except for general limitation rules
that applies to any normal user.

Amazon Web Services. AWS only allows users to allocate a
maximum of five elastic IP addresses, which can be associated
with an EC2 instance (a virtual machine in AWS), and later
disassociated from that instance and reused for another one.
The default limit of five elastic IP addresses may be increased
by a request from AWS. Note that an AWS account can create
many EC2 instances and receive new static IP addresses for
each one. Thus, if more than five IP addresses are needed,
EC2 instances have to be created and destroyed, which is a
time consuming process.

We collected data from several geographically-separated re-
gions in AWS. Regions were selected from various continents
(AP NORTHEST-1 (Tokyo) in Asia; CA-CENTRAL-1 (Canada),
US-EAST-1 (Virginia), and US-WEST-1 (California) in North
America; EU-WEST-1 (Ireland) and EU-WEST-3 (Paris) in Eu-
rope; and SA-EAST-1 (São Paolo) in South America), but the
choice of regions was arbitrary. Before collecting data, there
was not enough information about regions to decide on the
quality of data being collected. However, as the results show
(Section V-B), the selected regions exhibit diverse behaviors.

In AWS, regions can either use classic elastic IP addresses
allocated using EC2-Classic1, or default virtual private cloud
(VPC) addresses allocated in Default-VPC. In EC2-Classic,
IP addresses are allocated in a flat network shared by other
users. In Default-VPC, an EC2 instance receives a new IP ad-
dress in a default VPC for the region as soon as the instance is
created. The description from AWS does not provide details on
the differences of IP address prefixes in either mode. AWS also
does not provide details on restricting the actual subnetworks
from which IP addresses are allocated. However, EC2-Classic
is no longer supported for accounts that were created after 4
December 2013. Since the account used for experiments was
created before then, the data collection script could collect data
from EC2-Classic in several regions of AWS (US-EAST-1,
AP-NORTHEAST-1, EU-WEST-3, and SA-EAST-1). Other regions
received IP allocations from Default-VPC.

Google Cloud Platform. GCP imposes a different policy: only
a single global elastic IP address can be created at a time. Thus,
at the time of this study, requesting elastic IP addresses in GCP
for the purpose of collecting a diverse dataset of IP addresses
wasn’t viable. Instead, the process was to create five virtual
machines to record IP addresses, destroy the virtual machines,
and then recreate new ones.

B. Analyzing Collected IP Addresses

This section presents a statistical overview of the collected
data, revealing some aspects of how AWS and GCP allocate
IP addresses. Throughout this section, the goal is to analyze
data patterns primarily for three-byte prefixes (first 24 bits of

1https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-classic-platform.html

https://github.com/kussl/ClusterAttack
https://github.com/kussl/ClusterAttack
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-classic-platform.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-classic-platform.html


8

Region Days
Total IP

Addresses
Different IP
Addresses

3-byte
prefixes

AP-NORTHEAST-1 46 30,689 7,236 235
CA-CENTRAL-1 42 28,578 15,836 439
EU-WEST-1 109 120,142 7,812 550
EU-WEST-3 43 29,309 13,766 203
SA-EAST-1 45 30,187 2,143 88
US-EAST-1 63 44,405 38,744 1666
US-WEST-1 46 30,965 3,907 258
GCP 42 29,025 42 42

TABLE I: Summary of IP addresses collected.

IP addresses). Later in Section V-C, the collected data is used
to predict three-byte prefixes.

Number of IP Addresses and Prefixes. Table I shows the
summary of data collected in all regions for the entire period
of data collection. The goal is to show the dataset sizes and the
number of unique prefixes and IP addresses in each dataset.
All datasets were collected during the same period of time,
except for EU-WEST-1, which was collected in two separate
time intervals. The reason for variability in dataset sizes is
due to occasional failure of the data collection scripts.

Completeness Analysis. A complete dataset is one that
includes all possible three-byte prefixes in a given cloud
computing platform region during a time interval, subject
to constraints imposed by Ω (one such constraint could be
limiting prefixes per groups of users). Analysis of complete-
ness for full IP addresses is practically unattainable. Since an
attacker can have access to a few cloud accounts at a time,
and because other users do reserve IP addresses, attackers
need long time intervals to collect all possible unique IP
addresses. As Table I demonstrates, three-byte prefixes are far
more limited and a complete dataset of all possible prefixes
is a realistic possibility. Without internal information about
Ω, proving completeness, even for three-byte prefixes, is not
practical. Instead, we analyze the completeness of the available
dataset relative to the specific time interval in which data was
collected. The analysis is done in two ways: (1) counting the
number of new data points observed each day (Figure 2), and
(2) counting the number of possible values in the last byte for
each observed three-byte prefix (Table III).

First, the goal is to estimate completeness by measuring
how much new data is observed after a number of days during
the course of data collection. The available dataset is sorted
in an ascending order of full calendar days. Starting with
the earliest day on which IP addresses were allocated, the
number of new three-byte prefixes is shown in in Figure 2. The
reported number counts the prefixes that were not seen in any
previous day. The number of new prefixes converges to zero
for all regions, but the time to converge varies by region. This
analysis is useful for attackers to estimate the time interval
required to observe and record a large number of prefixes in
the dataset. Table II complements Figure 2 by showing the
number of days until no more new three-byte prefixes were
observed for the rest of days in the data collection period.
Table II also captures the number of individual days on which
no previously unseen data points were observed.

Table III shows the number of distinct values for the last
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Fig. 2: Daily new three-byte prefixes in each dataset.

Region Days
Days to observe

all 3-byte prefixes
Days with no new

3-byte prefix
AP-NORTHEAST-1 46 11 38
CA-CENTRAL-1 42 6 35
EU-WEST-1 109 54 88
EU-WEST-3 43 40 23
SA-EAST-1 45 14 37
US-EAST-1 63 34 38
US-WEST-1 46 20 37
GCP 42 39 17

TABLE II: The number of days until no more new three-byte
prefixes are observed in the remainder of the dataset (second
column), and the number of days in which no previously-
unobserved three-byte prefixes are observed (third column).

byte for each observed three-byte prefix. On average 10% of
the 255 possible values for the last byte are covered across the
datasets. This supports the decision in this work to focus only
on predicting the prefixes and enumerating the last byte. After
predicting the prefixes, the attacker can start by enumerating
the observed values for the last byte, and in case of trying all
observed last byte values without success, the attack continues
by enumerating the rest of the possible values.

Frequency Distribution. To estimate the effectiveness of a
simple attack strategy of just predicting the most frequently-
seen three-byte prefixes, the datasets were analyzed to compute
the relative frequencies of each observed prefix. A relative
frequency is the number of appearances of a unique three-byte
prefix divided by the sum of all frequencies. The summary

Region Max. Min. Mean Median
AP-NORTHEAST-1 75 1 31 30
CA-CENTRAL-1 66 8 36 36
EU-WEST-1 56 1 14 12
EU-WEST-3 174 1 68 63
SA-EAST-1 139 1 24 14
US-EAST-1 55 1 23 22
US-WEST-1 91 1 15 14
GCP 1 1 1 1

TABLE III: Statistical summaries for the number of values
observed in the last byte for each three-byte prefix.
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Region Max. Min. Mean Median
AP-NORTHEAST-1 0.01 ≈ 0 0.00425 0.004
CA-CENTRAL-1 0.005 0.001 0.00229 0.002
EU-WEST-1 0.007 ≈ 0 0.00179 0.0015
EU-WEST-3 0.012 ≈ 0 0.0049 0.005
SA-EAST-1 0.067 ≈ 0 0.01136 0.007
US-EAST-1 0.002 ≈ 0 0.00066 0.001
US-WEST-1 0.024 ≈ 0 0.00384 0.003
GCP 0.076 ≈ 0 0.02379 0.018

TABLE IV: Relative frequencies of three-byte IP prefixes. The
value in each cell is computed by dividing the number of
occurrences of each unique IP prefix in a region by the total
number of recorded IP prefixes. ≈ 0 indicates less than 0.0001.

Region H1 H2 H3 H Max.
AP-NORTHEAST-1 1.106 1.846 4.632 5.342 5.46
CA-CENTRAL-1 0.692 0.699 5.462 6.049 6.084
EU-WEST-1 0.961 2.162 5.06 6.058 6.31
EU-WEST-3 0.565 0.565 5.05 5.06 5.313
SA-EAST-1 0.654 0.661 3.724 3.887 4.477
US-EAST-1 1.495 2.738 5.668 7.577 8.012
US-WEST-1 1.16 1.62 4.993 5.364 5.553
GCP 0.439 1.513 3.182 3.364 3.738

TABLE V: Shannon entropy values provide a measure of
diversity in the dataset. Hb is the entropy of byte b, while
H is the entropy of the first three address bytes. The last
column shows the maximum possible entropy for each region’s
observations.

statistics for the computed relative frequencies are given in
Table IV.

A frequency attack (Section IV-C) can use a sorted list
of prefixes and their frequencies in the dataset to generate
predictions. For example, given the collected dataset, picking
the IP prefix with the maximum relative frequency in GCP,
the attacker’s best chance of correctly predicting an IP prefix
in the next IP address allocation is 7.6%, given that Ω does
not introduce a significant number of new IP prefixes within
a time delta that would result in incorrect assumptions about
the frequencies in the dataset.

Data Entropy. The difficulty of predicting the next address
prefixes used by the target network is assessed now. The
predictability of the first, second, and third bytes is captured
by their (Shannon) entropy, Hb = −

∑
i pi ln pi, b = 1, 2, 3,

where pi is the relative frequency of the ith byte value.
Table V shows Shannon entropy values. Hb is the entropy

for byte b, while H is the entropy for the first three bytes
taken together. The last column shows the maximum possible
entropy H = lnK for K observations, which varies by region.
More predictable prefixes correspond to entropy values much
smaller than the maximum entropy.

Repetition Rates. Repetition in the dataset benefits the clus-
tering attacker, which uses a transition matrix to predict the
target server’s choices. The rate of repetition for unique three-
byte prefixes was measured. For each region R, the three-byte
prefixes were collected from the dataset. Then, to measure the
repetition, for each unique three-byte prefix Ai, the number
dAi

R of three-byte prefixes observed in the dataset between two
occurrences of Ai in R was recorded. Since Ai can repeat

Region Max. Min. Mean Median
AP-NORTHEAST-1 13711 1 233 125
CA-CENTRAL-1 7346 1 432 293
EU-WEST-1 40916 1 546 277
EU-WEST-3 26801 1 198 98
SA-EAST-1 8917 1 87 21
US-EAST-1 31383 1 1582 1013
US-WEST-1 14203 1 255 141
GCP 27165 1 25 7

TABLE VI: Gaps between three-byte prefixes’ repetitions.
Within each region, for each unique three-byte IP prefix,
the reported statistic is for the number of three-byte prefixes
recorded between every repetition of the three-byte IP prefix.

more than once in R, Table VI shows summary statistics
(maximum, minimum, mean, and median) for all dAi

R values
in each region R.

C. Attack Simulation

Moving target defenses employ cycles of refreshing IP
addresses to distract attackers. In each refreshing cycle, a set
of N IP addresses S′ are requested from Ω to replace IP
addresses S in the surface. Recall that the goal of this study
is to use data collected from AWS and GCP to predict IP
addresses in S′, in each refreshing cycle. In the rest of this
section, three-byte prefixes are referred to as prefixes. A full
search of the last byte is not always necessary. As the data in
Table III shows, the average number of unique values for the
last byte across various datasets is 1–68, and the maximum
recorded number of unique values for the last byte is 174.

Attacker’s guesses. The performance of each attack strategy is
measured by the number of guesses required to predict one or
more prefixes (depending on whether N = 1 or N > 1) in the
target network during an attack iteration. An attack iteration
starts at the beginning of each refreshing cycle and terminates
if all N hosts are successfully discovered and attacked, or there
are no more prefixes to try. The source of the guesses varies
with the attacker. For the frequency and random attackers, the
guesses come from the list U of unique prefixes, and differ
only in how U is accessed (cf. Sections IV-C and IV-B). For
the clustering attacker, the guesses come from the prefix sets in
selected clusters, chosen in an order determined by transition
matrix probabilities (Section IV-D). For all attackers, a given
prefix is tried at most once — for the random (choose N
prefixes at random from U ) and clustering (examine each
prefix in each prefix set in each selected cluster) attackers,
a prefix may occur more than once.

The attack process consists of selecting an as yet untried
prefix, completing it with a value in the last byte (searching
through all possible values in the last byte), and attempting a
denial of service attack on the formed IP address. As searching
for the last byte, given a prefix, is trivial, the simulations only
include the number of guesses for predicting prefixes.

Simulation method. The goal of simulations is to estimate
how long an attacker would find N hosts. In our attack
simulation, the dataset is divided into a training sequence with
70% of the original dataset, in the order collected from the IP
address allocator of the region. Then, the remaining 30% of



10

the collected data are used as the test sequence. A complete
attack simulation iterates through all prefix sets in the test
sequence, with each attack iteration involving attacker guesses
for a prefix set from the test sequence.

During each attack iteration, the prediction list L is
formed according to one of the attack strategies: clustering
(Section IV-D), frequency (Section IV-C), or random (Sec-
tion IV-B). L is ordered according to priorities set by the attack
strategies. The attacker tries prefixes with the highest priorities
first. Prefixes are selected in order from L, representing
attacker guesses (described earlier). Guessing continues until
either all prefixes in A∗ are correctly guessed or there are no
more candidate prefixes in the prediction list. Each trial of a
prefix increments a guess counter. At the end of each iteration,
a guess counter value close to N is desired by the attacker.
We do not include the cost of scanning the last byte in the IP
address in the results, as we are assuming a naı̈ve strategy of
just scanning all addresses over the last byte.

Simulation results. Simulation results should reveal the qual-
ity of prediction and indicate whether solely requesting IP
addresses from Ω in a single region is an effective IP ran-
domization technique. The box plots summarizing the results
are shown in Figure 3. The results shown are for N = 5,
which is the original number of IP addresses allocated in each
iteration of collecting data. Note that modeling the prediction
of a set of N > 1 IP addresses is qualitatively different from
just iterating the prediction of N = 1 address multiple times.

There are several observations from the results of Figure 3,
showing the summary statistics of simulations for all datasets.
First, the frequency attacker achieves the lowest median num-
ber of correct guesses in all datasets, although the performance
is generally close to that of the clustering algorithm. This
suggests that the time series model behind the clustering is
not necessary, i.e., the address prefix set Am+1 depends less
on Am than on the individual address prefix frequencies,
independent of time. Second, the median number of guesses
is a function of the unique number of prefixes observed in the
dataset. For example, US-EAST-1 has 1666 unique prefixes and
achieves a median of 1229, 1363, or 1445 guesses, depending
on the attack strategy. Third, increasing the number of unique
prefixes alone does not necessarily increase the entropy in all
attack iterations, since for example, the first quartile of the box
plot is just below 1,000 guesses. Finally, the total estimated
number of guesses for full IP addresses is low and can be
quickly checked by systems such as Zmap [39]. For example,
taking the median number of possible values for the last byte
from Table III, one can estimate the number of guesses to
predict five IP addresses in US-EAST-1 as 1229×22 = 27, 038,
a reduction of approximately 30% from trying all 38,744
unique IP addresses observed in US-EAST-1. This number of
guesses is not a significant burden on attackers, since checking
IP addresses can be fast and can potentially be parallelized to
bypass anomaly detectors.

A prediction list can fail to predict all N prefixes in an attack
iteration. This happens with the clustering attacker when the
clusters are too small. It can also happen with the random and
frequency attackers if the actual prefixes were not observed

during the data collection phase. To measure the occasional
failures to detect prefixes, we divide the total number of
predicted prefixes by the total number of prefixes used as
choices of the target server in all iterations, forming the hit
rate. In all the experiments, the three attack strategies had a hit
rate of at least 90%, mostly above 95%, during all iterations,
except for the random attacker that performed poorly with GCP,
with a hit rate of 33% over the entire attack simulation.

D. Enlarging the Address Space

As the results of the previous section demonstrate, three-
byte prefixes are frequently reused by the Ω function. Although
resolving this vulnerability is out of the scope of this work and
requires a deep analysis, an immediate remedy might be to
increase the size of the available address space. One possible
solution is to randomize the IP address of the target server
by requesting addresses from multiple regions for which an
experiment was designed. The goal is to simulate a defense
strategy where IP addresses are requested from multiple re-
gions. The attacker uses a dataset of addresses collected from
all regions used by the defense, assuming the attacker’s correct
guess of all the used regions. However, the attacker does not
necessarily know from which region the next IP address of
the target server is selected. The advantage of the clustering
approach is that in addition to predicting the next IP address,
the data also assists the attacker in guessing the next region
from which the IP address was requested.

In this experiment, IP addresses of multiple regions (all the
regions in the collected datasets) were combined in a time
series list:

(A11, A21, . . . , Amn),

where Aij is the jth IP address from the ith region, forming a
new dataset with an increased number of unique IP addresses.
In a loop that starts with an empty dataset D∗, in each iteration,
a region’s dataset D is randomly chosen and the next IP
address from D is recorded in the new dataset D∗. The IP
addresses in D∗ are recorded in the order they appeared at the
time of collecting the original datasets. The new dataset is as
large as the smallest original dataset.

The results of this experiment are depicted in Figure 4.
As shown, the maximum number of steps to find the target
three-byte prefixes is increased, as the number of unique
combinations of three-byte prefixes is naturally increased due
to combining a diverse set of addresses in the new dataset
D∗. Further, notice that the clustering approach performs with
a better median, compared to the other two approaches. This
is due to the ability of the clustering approach to predict
the region and the three-byte prefix that are expected to be
used by the target server. Comparing the results to the most
diverse region, US-EAST-1, the attacker still has a considerable
chance to find the next three-byte prefix in a small number of
steps. The results suggest that lowering the predictability of
IP addresses is not trivial and requires careful considerations.

E. Parallelized Attacks

A variation of the attack model is to parallelize the attack
process to reduce the time required to predict the next IP
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Fig. 4: Performance of simulated attack iterations with a
dataset that combines IP addresses from multiple regions. For
each IP address in the dataset, a region is randomly chosen and
the next IP address in the time series is selected and recorded.

address. Parallelizing the attack on a specific target server can
be done in three ways:

1) a single attacker with parallel attacking resources,
2) multiple independent attackers sharing no information,

and
3) a coordinated attack by multiple attackers.

A parallel attack can reduce the time required to predict the
target IP address but simultaneously executing attempts from
multiple hosts. In cases where the attack is not limited by the
response rate of the server, this can reduce the expected time of
the attack by 1/N where there are N parallel attackers who are
partitioning the address space to search (for example, by using
the same prediction methods here, but dividing the guesses
for the last byte of the IP address among the N attackers).

This does not, however, reduce the resources required for a
successful attack, just its expected time to success.

F. Limitations of the Study

The experiments and the dataset show a limited address
space used in cloud computing platforms. Although the actual
IP address allocation could be randomized, the availability
of IP addresses affects the predictability of a moving target
defense system. Given enough time and resources, attackers
can design other data collection methods that would lead
to collecting an even large dataset, revealing more patterns
in the data. One limitation of this study is that only one
data collection method was used in the learning phase. Using
various data collection methods can be the subject of a future
work, studying the effect of the various ways an attacker
can learn about the behavior of Ω. Another limitation is
the changing behavior of Ω. Attackers cannot guarantee a
constant behavior in Ω, especially when such attacks become
widespread. Thus, a continuous and adaptive learning process
is required to keep attacks updated. Unless moving target
defenses are redesigned to avoid relying solely on the behavior
of Ω, the expectation is that attackers can design adaptive
algorithms to chase the moves of target networks.

VI. CONCLUSION

The possibility of predicting IP addresses allocated by cloud
computing platforms is alarming for moving target defenses
that assume IP address allocations given by cloud services
are highly unpredictable. As shown in Section V, an attacker
can reliably predict cloud IP address allocations. Unless cloud
computing platforms employ limitations on IP address al-
location, attackers can conveniently update the database of
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IP addresses and continue attacking various clients. Policies
limiting IP address allocation would impose usability limita-
tions that are difficult to implement when serving large virtual
networks. Thus, designing moving target defense systems
with a core mechanism that depends on freshly assigned IP
addresses requires careful considerations to increase entropy
in the selected IP addresses, disabling accurate predictions by
attackers.

IPv6 addresses may be a secure alternative to IPv4 addresses
as a platform for IP address randomization. Due to formatting
differences and the IPv6 address space, evaluating the effec-
tiveness of IPv6 addresses for randomization in cloud is a
subject of future work.
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