
Remark on Algorithm 1012: Computing projections with
large data sets

TYLER H. CHANG, Argonne National Laboratory, USA
LAYNE T. WATSON, Virginia Polytechnic Institute and State University, USA
SVEN LEYFFER, Argonne National Laboratory, USA
THOMAS C. H. LUX,Meta, USA
HUSSAIN ALMOHRI, Kuwait University, Kuwait

In ACM TOMS Algorithm 1012, the DELAUNAYSPARSE software is given for performing Delaunay interpolation
inmedium to high dimensions.When extrapolating outside the convex hull of the training set, DELAUNAYSPARSE
calls the nonnegative least squares solver DWNNLS to compute projections onto the convex hull. However,
DWNNLS and many other available sum of squares optimization solvers were not intended for usage with many
variable problems, which result from the large training sets that are typical in machine learning applications.
Thus, a new PROJECT subroutine is given, based on the highly customizable quadratic program solver BQPD. This
solution is shown to be as robust as DELAUNAYSPARSE for projection onto both synthetic and real-world data
sets, where other available solvers frequently fail. Although it is intended as an update for DELAUNAYSPARSE,
due to the difficulty and prevalence of the problem, this solution is likely to be of external interest as well.

CCS Concepts: • Mathematics of computing → Mathematical software; Interpolation; Quadratic
programming; • Theory of computation→ Computational geometry.

Additional Key Words and Phrases: Delaunay interpolation, projection, quadratic programming, data skew

ACM Reference Format:
Tyler H. Chang, Layne T. Watson, Sven Leyffer, Thomas C. H. Lux, and Hussain Almohri. 2023. Remark on
Algorithm 1012: Computing projections with large data sets. ACM Trans. Math. Softw. 0, 0, Article 0 (2023),
8 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
ACM TOMS Algorithm 1012 provides the Fortran software DELAUNAYSPARSE for computing the
Delaunay interpolant, an approximation to a 𝑑-dimensional function 𝑓 : R𝑑 → R𝑜 , in medium to
high dimensions 𝑑 [1].
Let P = {𝑝1, . . ., 𝑝𝑛} ⊂ R𝑑 be a given set of “training data” with known response values 𝑓 (𝑝𝑖)

for all 𝑝𝑖 ∈ P. Let 𝑞 be an interpolation point in the convex hull of P with unknown response

Authors’ addresses: Tyler H. Chang, tchang@anl.gov, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 S Cass Ave, Lemont, IL, USA, 60516; Layne T. Watson, ltw@cs.vt.edu, Depts. of Computer Science,
Mathematics, and Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Torgersen Hall,
620 Drillfield Dr, Blacksburg, VA, USA, 24061; Sven Leyffer, leyffer@anl.gov, Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, USA, 60516; Thomas C. H. Lux, Meta, Menlo Park, CA, USA;
Hussain Almohri, Dept. of Computer Science, Kuwait University, Kuwait.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0098-3500/2023/0-ART0 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

HTTPS://ORCID.ORG/0000-0001-9541-7041
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-9541-7041
https://doi.org/XXXXXXX.XXXXXXX

0:2 Chang, Watson, Leyffer, Lux, and Almohri

values. Denote the Delaunay triangulation of P by 𝐷𝑇 (P), and let 𝑠1, . . ., 𝑠𝑑+1 ∈ P be the vertices
of a 𝑑-simplex in 𝐷𝑇 (P) containing 𝑞. Then there exist interpolation weights𝑤 given by solving[

𝑠1 . . . 𝑠𝑑+1
1 . . . 1

]
𝑤 =

[𝑞
1

]
,

and the Delaunay interpolant to approximate 𝑓 (𝑞) is

𝑓𝐷𝑇 (𝑞) =
𝑑+1∑︁
𝑖=1

𝑓 (𝑠𝑖)𝑤𝑖 . (1)

DELAUNAYSPARSE calculates the value of 𝑓𝐷𝑇 (𝑞𝑖) for a finite set of interpolation points Q =

{𝑞1, . . . , 𝑞𝑚}. This is done by computing only the𝑚 simplices in 𝐷𝑇 (P) containing points in Q,
without computing the entire 𝐷𝑇 (P), which grows exponentially large in 𝑑 .

Note that so long as each 𝑞 ∈ Q is inside the convex hull of P, denoted 𝐶𝐻 (P), then at least
one simplex 𝑆 in 𝐷𝑇 (P) will always contain 𝑞. However, it is often the case that one wishes to
make predictions for an extrapolation point 𝑧 that is outside 𝐶𝐻 (P). DELAUNAYSPARSE handles this
situation by projecting 𝑧 onto 𝐶𝐻 (P) then interpolating at the projection 𝑧.
Let𝑊 be the 𝑑 × 𝑛 matrix

𝑊 = [𝑝1 𝑝2 . . . 𝑝𝑛] .
Then DELAUNAYSPARSE calculates the projection by 𝑧 = 𝑊𝑥★, where 𝑥★ solves the nonnegative
least squares problem (NNLS) with a single equality constraint

min
𝑥∈R𝑛

∥𝑊𝑥 − 𝑧∥2
2 subject to 𝑥 ≥ 0 and

𝑛∑︁
𝑖=1

𝑥𝑖 = 1. (2)

Let 𝑒 denote the 𝑛-vector of ones. To solve Equation (2), DELAUNAYSPARSE calls the double-precision
SLATEC solver DWNNLS [8], which solves the equality-constrained NNLS

min
𝑥∈R𝑛

∥𝑊𝑥 − 𝑧∥2
2

subject to
𝑒⊤𝑥 = 1, 𝑥 ≥ 0

as a weighted nonnegative least squares problem (WNNLS) by choosing a small penalty parameter
𝜇 and solving the NNLS

min
𝑥

 [𝜇𝑊

𝑒⊤

]
𝑥 −

[
𝜇𝑧

1

]

2

2

subject to 𝑥 ≥ 0. (3)

The error when using the solution to (3) as the solution to (2) is proportional to the penalty
parameter 𝜇. In DWNNLS, the value of 𝜇 is chosen such that

𝜇2 =
10−4𝜂

[𝑊𝑒⊤]

∞

where 𝜂 ≈ 2.22 × 10−16 is the unit roundoff and ∥ · ∥∞ is the matrix infinity norm, given by the
maximum row-sum. It is argued that this quantity is sufficient to guarantee accuracy proportional
to the unit roundoff [8]. Because DELAUNAYSPARSE normalizes P to the unit sphere on input,𝑊 is
componentwise less than or equal to 1, and ∥𝑊

𝑒⊤ ∥∞ = ∥𝑒⊤∥∞ = 𝑛.
The solution in (3) is effective when projecting onto the convex hull of a small number of points

and when the matrix𝑊 is well-conditioned. However, at a fundamental level, DWNNLS and many
similar solvers were not designed to handle problems with large numbers of variables, as is the

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

Remark on Algorithm 1012: Computing projections with large data sets 0:3

case when 𝑛 grows large. In the particular case of DWNNLS, 𝑛 being even moderately large drives 𝜇
to numerical zero, at which point 𝜇𝑊 becomes close to or exactly row-rank deficient. Alternatively,
if certain dimensions of the training data set exhibit far more variability than others as is often the
case in real-world data science problems, 𝜇𝑊 can become numerically singular for even smaller
values of 𝑛 after P is normalized to the unit hypersphere.

In Section 2, the generic quadratic program (QP) solver BQPD of R. Fletcher [6] is introduced.
BQPD is robust against the issue discussed above, despite solving a broader class of problems than
DWNNLS. As a result, an update to DELAUNAYSPARSE is needed, replacing all references to DWNNLS
with BQPD, and producing a new public subroutine PROJECT for computing projections onto the
convex hull via reference to BQPD. In Section 3, the original issue and effectiveness of the proposed
solutions are demonstrated on both synthetic examples and a real data set. The difficulty of this
problem is greater than originally thought, as observed through the failure of other well-known
open source QP solvers on the failure cases of DWNNLS. Therefore, the new subroutine PROJECTmay
be of external interest as well.

2 USING BQPD TO COMPUTE PROJECTIONS ONTO THE CONVEX HULL
To pose the equality-constrained NNLS in (2) as a QP in general form, the sum-of-squares objective
is expanded, divided by two, and the constant term is dropped, yielding

min
𝑥∈R𝑛

1
2
𝑥⊤𝑊 ⊤𝑊𝑥 − 𝑧⊤𝑊𝑥 subject to 0 ≤ 𝑥 ≤ 𝑒, 𝑒⊤𝑥 = 1. (4)

Interpreted as a generic QP, (4) is a hard problem for many QP solvers because the Hessian matrix
𝑊 ⊤𝑊 is dense and the number of variables 𝑛 can be prohibitively large for real-world data science
applications (recall that 𝑛 comes from the number of training points in P). However, (4) has a lot
of structure that is exploited in state-of-the-art active-set solvers.

In this paper, the active-set solver BQPD [6, 7] is used. BQPD is a primal active-set solver that is
well-suited to solving large-scale instances of (4). One notable advantage of BQPD is that it does
not require the Hessian matrix𝑊 ⊤𝑊 to be provided explicitly. Instead, one only needs to provide
a subroutine to form products of the Hessian with a vector, 𝑣 . In the case of (4), this product can be
done in O(𝑛𝑑) time while only explicitly storing𝑊 , which is an input. BQPD solves a sequence of
equality-constrained QPs, where the equality constraints are 𝑒⊤𝑥 = 1, and a subset of currently
active bounds, 𝑥𝑖 = 0 (in this case, one can ignore the upper bounds, 𝑥𝑖 ≤ 1, which is implied).
BQPD forms and updates factors of two matrices at every iteration: (1) It forms LU factors of the
active constraint matrix, 𝐴A := [𝑒 : 𝐼A : 𝐼I], where 𝐼A are the columns of active bounds, 𝑥𝑖 = 0,
and 𝐼I is an arbitrary subset of the remaining columns of 𝐼 . Because all but one column of 𝐴A are
unit columns, the factors can be stored and computed in O(𝑛) operations (updates are O(1), if they
only involve switching columns between 𝐼A and 𝐼I). (2) BQPD also forms factors of the reduced
Hessian, 𝑍⊤𝑊 ⊤𝑊𝑍 , where 𝑍 is implicitly defined as

[𝑒 𝐼A 𝐼I]−1 =

[
𝑌⊤

𝑍⊤

]
.

Note that 𝑍 is again comprised of unit columns. The reduced Hessian is typically small, because
the solution 𝑥★ to (4) is always extremely sparse since each facet of the convex hull can be defined
by at most 𝑑 vertices in P and generally 𝑑 ≪ 𝑛 (the upper bound, 𝑥 ≤ 𝑒 , is redundant). Thus, the
reduced Hessian is an 𝑑 × 𝑑 matrix, which can be factored efficiently.

Overall, BQPD requires O(𝑛) plus O(𝑑2) additional storage, where 𝑑 ≪ 𝑛, and uses O(𝑛𝑑 + 𝑑3)
flops per iteration. This workspace overhead is less than the O(𝑛𝑑) required to store the input data
P, so it does not increase the space complexity beyond the size of the input. However, it is still

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

0:4 Chang, Watson, Leyffer, Lux, and Almohri

significantly greater than the workspace storage required by DELAUNAYSPARSE, which only requires
O(𝑑2) additional storage. Thus, it is worth being mindful of this additional space requirement. On
the other hand, BQPD’s iteration complexity is significantly less than the iteration complexity
of DELAUNAYSPARSE, which is O(𝑛𝑑2) [2]. Therefore, this approach does not increase the time
complexity of the original DELAUNAYSPARSE software.

2.1 Software Updates and the PROJECT subroutine
To implement the solution proposed in Section 2, a new public subroutine named PROJECT has has
been added to DELAUNAYSPARSE. This subroutine uses a private subroutine GDOTX for evaluating
𝑊 ⊤𝑊𝑥 without ever explicitly forming𝑊 ⊤𝑊 . An additional interface block is provided for PROJECT
since it may be of external interest.
One limitation of BQPD is that it uses Fortran common blocks to pass data between several

internal subroutines. This method of communication is not threadsafe, so the PROJECT subroutine
must be called from within an OpenMP lock to avoid race conditions. However, as previously stated
BQPD adds significant additional storage overhead, but this projection via BQPD is generally not
the most time consuming part of the overall Delaunay interpolation. Therefore, the additional
space requirement for shared-memory parallelism of BQPD may outweigh the negligible benefit of
parallelizing a faster part of the computation in many use-cases.

Additionally, recall from ACM TOMS Algorithm 1012 [1] that DELAUNAYSPARSE uses a working
precision of 𝜀 provided by the user (defaults to the square-root of the unit-roundoff). Among other
things, 𝜀 is used as a tolerance when checking whether a point lies inside a simplex. However, when
a simplex is ill-conditioned (as often occurs with high-dimensional simplices along the boundary
of the convex hull) a point that is less than 𝜀 outside of 𝐶𝐻 (P) could be judged as much farther
due to numerical errors. In order to avoid these numerical issues, a slightly lower tolerance of 𝜀1.5

is required for BQPD.

3 DEMONSTRATION OF SOLUTIONS
This section demonstrates the prevalence of extrapolation in the context of machine learning,
the prevalence of the error described in Section 1 on synthetic and real-world data sets, and the
robustness of the BQPD-based solution on these problems. The purpose of this paper is not to
study the interpolation/extrapolation accuracy of Delaunay interpolation, which has already been
analyzed in previous works [9]. Therefore, in this section there is no consideration for any machine
learning task (response values/class labels are not used and no predictions are made). Instead, the
focus is on correctly computing the projection onto 𝐶𝐻 (P) for various synthetic and real-world
training sets P.

3.1 Synthetic Examples
To assess the robustness of the new PROJECT subroutine powered by BQPD, this section considers
the success rate when solving (2) for numerous synthetic data sets and extrapolation problems that
are carefully designed to be challenging. Each data set is comprised of randomly generated training
points P and 1000 extrapolation points drawn randomly from a sphere that contains P. In order to
consider different data distributions and problem conditioning, the input set P is pseudo-randomly
sampled from several common distributions and undergoes several different transformations.
First, a data geometry is selected. Options include lattice, which means points are randomly

selected from the smallest 𝑑-dimensional axis aligned lattice with 𝑘 values on each axis such that
𝑘𝑑 ≥ 𝑛; ball, which means that points are chosen from a Latin hypercube design that is projected
into a ball in a way that preserves cell volume; and box, which means a standard Latin hypercube
design is used to generate points. Next, in order to check how DELAUNAYSPARSE handles rescaling

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

Remark on Algorithm 1012: Computing projections with large data sets 0:5

data, a uniform scale factor is applied across all dimensions of 𝑃 with three possible values. Next,
a data modifier is applied to control the conditioning of the data. In particular, scalar multipliers
with a particular distribution are applied to each of the axes, where identity multiplies all by 1,
exponential skew multiplies each component sequentially with uniformly spaced (in input) values
from a exponential curve that intersects (0, 0) and (𝑠, 𝑠), and linear skew multiplies each component
sequentially by values linearly spaced between 0 (noninclusive) and 𝑠 (inclusive). The skew factor 𝑠
has 3 possible values. In total there are 405 synthetic experimental designs generated by permuting
unique combinations of these variables. Table 1 provides the experimental variables and their
descriptions, of which all unique combinations are tested with 10 trials. In total there are 4050
experiments to simulate different conditions under which the Delaunay extrapolation routines
might operate. Both the old version of DELAUNAYSPARSE using DWNNLS and the updated version
using BQPD are tested on all generated synthetic data sets.

Table 1. Variables and their values in the synthetic data experiments. The values 𝑛 and 𝑑 define the size and
shape of P, as defined in Section 1. Data geometry, data modifier, skew, and scale factor are defined above.

Variable Values

dimensions (𝑑) 2, 8, 16
number of points (𝑛) 𝑑 + 1, 29 (512), 214 (16, 384)

data geometry lattice, ball, box
scale factor 2−20 (9.5𝑒−7), 1, 263 (9.2𝑒18)
data modifier identity, exponential skew, linear skew

skew (𝑠) 1, 210 (1024), 220 (1.1𝑒6)

In total the synthetic benchmark produces 276 instances of error code 71 from DELAUNAYSPARSE
using DWNNLS, and 0 instances of error code 71 when using BQPD on the same problems. Ag-
gregated across all experiments, only the variable 𝑛 has a noticeable effect on the frequency of
DELAUNAYSPARSE error code 71 (due to failed projections of extrapolation points onto the convex
hull of data). For all other variable values the prevalence of error 71 is uniform. Specifically, for
𝑛 = 𝑑 + 1 there were no occurrences of error 71, for 𝑛 = 29 there are 15 occurrences of error 71, and
for 𝑛 = 214 there 261 occurrences of error 71. This synthetic benchmark supports the hypothesis
that numerical instabilities associated with large numbers of variables are the core problem with a
DWNNLS approach to projecting extrapolation points. This synthetic benchmark also shows that the
errors no longer occur with a BQPD approach for projecting extrapolation points. Next a comparison
of approaches to extrapolation on a real data set is considered.

3.2 KDDCUP99 Data Set
The previous section has shown how the new BQPD-based PROJECT subroutine performs on synthetic,
uniformly-distributed data sets. However, to understand the prevalence of the issue and effectiveness
of the solution, a test case based on real-world data is needed. Real-world data sets are often massive,
ill-conditioned, and rankwith geometric degeneracy, which presents a challenge for many geometric
programming techniques [5].

KDDCUP99 [12] is a network intrusion detection data set. The data set includes predictors that
were collected from network communications with their corresponding classification labels. The
machine learning task is to classify a given communication instance, represented by its predictors,
as one of the network attack types or as normal. The data set includes 42 predictors summarized in
Table 2, with 94,008 training points and 50,620 testing points in the raw data set.

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

0:6 Chang, Watson, Leyffer, Lux, and Almohri

Table 2. Number of predictors and their types for the KDDCUP99 data set.

Feature Type Count

Basic features of individual TCP connections 9
Content features within a connection 13
Traffic features using a two-second time window 20

As previously stated, for the scope of this paper there is no consideration for the machine learning
task. Therefore, the class labels are unused and pre-processing of the data is kept to a minimum.
However, DELAUNAYSPARSE will produce an error if P contains any duplicate data points or if all
points in P lie in a lower-dimensional linear manifold. For the raw KDDCUP99 data set, both of
these issues occur.
Therefore, taking the recommendations in the original software publication [1], the following

steps were taken to ensure that DELAUNAYSPARSE will not raise an error.
(1) First, a reduced-dimensional set P̂ with improved conditioning is computed via a combination

of rescaling and principle component analysis (PCA). This is done by calculating shift and
scale factors 𝑠, 𝑡 ∈ R41, where 𝑠 is the barycenter of P and 𝑡 is the componentwise maximum
magnitude of 𝑝 −𝑠 over all 𝑝 ∈ P. To reduce the dimension, the singular value decomposition
is computed as 𝑊̄ = 𝑈 Σ𝑉⊤ for 𝑊̄ = [(𝑝1 − 𝑠)/𝑡 (𝑝2 − 𝑠)/𝑡 . . . (𝑝𝑛 − 𝑠)/𝑡]. Then,
the reduced-dimensional set 𝑊̂ = 𝑈 †⊤𝑊̄ where 𝑈 † contains the first 26 columns of 𝑈 ,
corresponding to the singular values in Σ whose magnitudes are greater than 10−4. Finally,
the reduced-dimensional training points in P̂ are given by the columns of 𝑊̂ .

(2) Next, to eliminate redundant points in P̂, all tuples of points in P̂ whose pairwise 2-norm
distance is less than 10−4 are clustered and replaced by a single synthetic training point
whose value is their arithmetic mean.

After the above reduction, the resulting set P̂ that is used in this section contains 26 embedded
features each in the normalized range [−1, 1], 77, 802 training points, and 50, 620 testing points.
In order to asses the prevalence of the issue addressed in this paper and the performance of

the new PROJECT subroutine on the cleaned KDDCUP99 data set, the following experiment was
conceived. First, for various training sizes 𝑛𝑘 , 𝑛𝑘 of the total 77, 802 indices in P̂ are sampled to
produce a reduced training set of size 𝑛𝑘 . Next, 20 testing points from the 50, 620 in the total test
set are sampled. Of the 20 testing points sampled, only those that are outside the convex hull of the
training sample (extrapolation points) are kept. The above experiment is repeated for 10 different
random seeds in order to produce several real-world data sets for each value of 𝑛𝑘 .
For comparison, the original projection implementation using DWNNLS in DELAUNAYSPARSE ver-

sion 1 is considered against the new version using BQPD. Additionally for the real-world data
considered in Section 3.2, the projection is also computed using several open-source QP and
second-order cone program (SOCP) solvers available in the popular convex programming modeling
language CVXPY [3] (version 1.3.1). To do so, the problem (2) is modeled as a linearly constrained
sum-of-squares minimization problem in CVXPY, then the OSQP (QP) [11], ECOS (SOCP) [4], and
SCS (SOCP) [10] solvers are each used to solve the problem, requiring the same accuracy level as
described in Section 2.1 (∼ 1.8 × 10−12 in 64-bit IEEE arithmetic) with an iteration limit of 10, 000.

For each training size 𝑛𝑘 and over all 10 random seeds, the total number of extrapolation points
(out of 200 total sampled testing points), average condition number (over the 10 training samples),
and probability of success for each solver is calculated. The results of this experiment are presented
in Table 3.

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

Remark on Algorithm 1012: Computing projections with large data sets 0:7

success rate
𝑛𝑘 extrap points 𝜅 (𝑊̂) BQPD DWNNLS OSQP ECOS SCS

1,000 169 308.83 1.0 0.30 0.25 1.0 0.0
5,000 141 98.82 1.0 0.30 0.04 1.0 0.0
10,000 123 93.40 1.0 0.22 0.12 0.98 0.0
15,000 109 91.09 1.0 0.17 0.17 0.96 0.0
20,000 99 91.23 1.0 0.17 0.15 0.90 0.0

Table 3. Total number of extrapolation points, average condition number (𝜅), and solver success rates for
various size subsamples of the cleaned KDDCUP99 data set.

From these results, several conclusions can be drawn. First, studying the meta data, it is clear
that the number of extrapolation points is quite large. While it decreases with the size of the
training set, at least 50% of the testing points sampled were extrapolation points for all training
sizes used here. Second, the conditioning of the matrix 𝑊̂ is somewhat poor, despite significant
preprocessing to improve the problem conditioning, but improves as 𝑛𝑘 grows. However, the
performance of all methods except BQPD decreases as 𝑛𝑘 increases, again suggesting that despite
the poor conditioning, the value of 𝑛 is the most important factor in the difficulty of (2).
Finally, looking at the success rates, only BQPD is able to compute all projections across all

training sizes, showing the robustness of this solution. The majority of the solvers failed more than
50% of the time on even the smallest samples of the training set. Of the other solvers compared,
only ECOS offers acceptable performance on the smaller problem sizes, but still fails to converge
a significant percentage of the time on the larger problems. Given the robustness of the original
Delaunay interpolation code and algorithm, only BQPD gives performance on these extrapolation
tasks that is in keeping with the spirit of DELAUNAYSPARSE.

ACKNOWLEDGMENTS
This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357.

REFERENCES
[1] Tyler H. Chang, Layne T. Watson, Thomas C. H. Lux, Ali R. Butt, KirkW. Cameron, and Yili Hong. 2020. Algorithm 1012:

DELAUNAYSPARSE: Interpolation via a Sparse Subset of the Delaunay Triangulation in Medium to High Dimensions.
ACM Trans. Math. Softw. 46, 4, Article 38 (2020), 20 pages. https://doi.org/10.1145/3422818

[2] Tyler H. Chang, Layne T. Watson, Thomas C. H. Lux, Bo Li, Li Xu, Ali R. Butt, Kirk W. Cameron, and Yili Hong. 2018.
A polynomial time algorithm for multivariate interpolation in arbitrary dimension via the Delaunay triangulation. In
Proc. 2018 ACM Southeast Conference (ACMSE ’18) (Richmond, KY, USA). ACM, Article 12, 8 pages. https://doi.org/10.
1145/3190645.3190680

[3] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling language for convex optimization.
Journal of Machine Learning Research 17, 83 (2016), 1–5. http://jmlr.org/papers/v17/15-408.html

[4] Alexander Domahidi, Eric Chu, and Stephen Boyd. 2013. ECOS: An SOCP solver for embedded systems. In European
Control Conference (ECC) (Zürich, Switzerland). IEEE, 3071–3076. https://doi.org/10.23919/ECC.2013.6669541

[5] Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of Simplicity: A Technique to Cope with Degenerate
Cases in Geometric Algorithms. ACM Transactions on Graphics (TOG) 9, 1 (1990), 66–104. https://doi.org/10.1145/
77635.77639

[6] Roger Fletcher. 1993. Resolving degeneracy in quadratic programming. Annals of Operations Research 46 (1993),
307–334. https://doi.org/10.1007/BF02023102

[7] Roger Fletcher. 2000. Stable reduced Hessian updates for indefinite quadratic programming. Mathematical programming
87 (2000), 251–264.

[8] Richard J. Hanson and Karen H. Haskell. 1982. Algorithm 587: Two Algorithms for the Linearly Constrained Least
Squares Problem. ACM Trans. Math. Softw. 8, 3 (1982), 323–333. https://doi.org/10.1145/356004.356010

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

https://doi.org/10.1145/3422818
https://doi.org/10.1145/3190645.3190680
https://doi.org/10.1145/3190645.3190680
http://jmlr.org/papers/v17/15-408.html
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.1145/77635.77639
https://doi.org/10.1145/77635.77639
https://doi.org/10.1007/BF02023102
https://doi.org/10.1145/356004.356010

0:8 Chang, Watson, Leyffer, Lux, and Almohri

[9] Thomas C. H. Lux, Layne T. Watson, Tyler H. Chang, Jon Bernard, Bo Li, Li Xu, Godmar Back, Ali R. Butt, Kirk W.
Cameron, and Yili Hong. 2021. Interpolation of sparse high-dimensional data. Numerical Algorithms 88, 1 (2021),
281–313. https://doi.org/10.1007/s11075-020-01040-2

[10] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. 2016. Conic Optimization via Operator Splitting and
Homogeneous Self-Dual Embedding. Journal of Optimization Theory and Applications 169, 3 (June 2016), 1042–1068.
https://doi.org/10.1007/s10957-016-0892-3

[11] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. 2020. OSQP: an operator
splitting solver for quadratic programs. Mathematical Programming Computation 12, 4 (2020), 637–672. https:
//doi.org/10.1007/s12532-020-00179-2

[12] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A detailed analysis of the KDD CUP 99 data
set. In 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. IEEE, Ottawa, ON,
Canada, 1–6. https://doi.org/10.1109/CISDA.2009.5356528

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department
of Energy will provide public access to these results of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 0. Publication date: 2023.

https://doi.org/10.1007/s11075-020-01040-2
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1109/CISDA.2009.5356528
http://energy.gov/downloads/doe-public-access-plan

	Abstract
	1 Introduction
	2 Using BQPD to Compute Projections onto the Convex Hull
	2.1 Software Updates and the PROJECT subroutine

	3 Demonstration of Solutions
	3.1 Synthetic Examples
	3.2 KDDCUP99 Data Set

	Acknowledgments
	References

