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)is paper presents a client bootstrapping protocol for proxy-based moving target defense system for the cloud. )e protocol
establishes the identity of prospective clients who intend to connect to web services behind obscure proxy servers in a cloud-based
network. In client bootstrapping, a set of initial line of defense services receive new client requests, execute an algorithm to assign
them to a proxy server, and reply back with the address of the chosen proxy server. )e bootstrapping protocol only reveals one
proxy address to each client, maintaining the obscurity of the addresses for other proxy servers. Hiding the addresses of proxy
servers aims to lower the likelihood that a proxy server becomes the victim of a denial-of-service (DoS) attack. Existing works
address this problem by requiring the solution of computationally intensive puzzles from prospective clients. )is solution slows
the progression of attacks as well as new clients. )is paper presents an alternative idea by observing that limited capacity of
handling initial network requests is the primary cause of denial-of-service attacks.)us, the suggested alternative is to utilize cost-
effective high-capacity networks to handle client bootstrapping, thus thwarting attacks on the initial line of defense.)e prototype
implementation of the protocol using Google’s firebase demonstrates the proof of concept for web services that receive network
requests from clients on mobile devices.

1. Introduction

Denial-of-service (DoS) attacks on web services in cloud-
based virtual networks continue to threaten small or me-
dium-sized networks by exhausting the available memory
and computation power of the hosting machines. Small or
medium-sized networks are particularly vulnerable because
of the budget limitation, severely restricting the computation
capacity of the machines that serve external clients. )us,
attackers can win the resource race against the target net-
work by using simple denial-of-service vulnerabilities such
as the ones in prominent web server software. A growing
interest is in the use of moving target defense (MTD)
strategy against DoS attacks on vulnerable networks. In this
case, target services dynamically change IP addresses and
introduce diversity in the hosting machines to gain the
advantage of time.)emoving target defense model benefits

from the elasticity of the cloud, which allows for swift and
dynamic responses to attacks, using programmable firewall
rules and network interfaces applied to elastic computing
resources.

Moving target defense provides a strong defense strategy
against DoS attacks without focusing on the details of
specific network service vulnerabilities that attackers exploit.
)e central idea is to increase the DoS attacker’s effort in
finding and attacking large services in the network. For-
mally, suppose that a function search (S, N) is used by the
denial-of-service attacker, given a possible search space S to
find the target addresses in a network N. With no moving
target defense, assume that search (S, N) terminates with
the complexity O(f(n)), for a typically linear f(n) number
of possible addresses (usually requiring a Nmap scan [1]).
)e key to maximizing the attacker’s search effort is in
randomizing the network address search space. )us,
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moving target defense aims to maximize O(f(n)), resulting
in a higher-order polynomial or ideally an exponential f(n).
State-of-the-art moving target defense systems use proxy
servers that mediate clients and application servers. )e IP
addresses of the proxy servers are only known to boot-
strapped clients that have been through identification, au-
thentication, and assignment to specific proxy servers.
Attacker clients (without knowing the proxy IP addresses)
should search through an IP address space to find the target
proxy servers. )at said, the network should allow new
clients to connect to the proxy servers by first interacting
with machines in an initial line of defense. )e initial in-
teraction would perform client bootstrapping and allow
future communication with the proxy servers. )e problem
is that machines that perform the initial interaction with
unknown clients are themselves susceptible to denial-of-
service attacks. A weak initial client bootstrapping would
defeat the purpose of moving target defense.

1.1. Problem Statement. Scalable and effective client boot-
strapping for moving target defense is the focus of this work.
)e bootstrapping process requires a set of entry point
servers as the first line of defense, referred to as the initial
point, that is only responsible for bootstrapping clients.
Since proxy server IP addresses are not public, a prospective
client informs the initial point about the intent to use the
hosted services. )e initial point executes a bootstrapping
protocol to identify, authenticate, and register the pro-
spective client. If successful, this protocol terminates with
informing the client about a secret address of a proxy p ∈ R

of the set of currently executing proxy servers R. Using this
information, the client can now connect to p, which relays
the client requests and the application server’s responses.
Client bootstrapping is a simple but crucial process that
requires special considerations. Without protecting the
machines in the initial point, the entire moving target de-
fense is useless.)e reason is that the denial-of-service attack
on the initial point prevents clients from receiving a proxy
server IP address, effectively losing contact with the desired
application servers.

1.2. Existing Approaches. Previously, the bootstrapping
problem was tackled using two methods. One approach is
(for example, MOTAG [2]) using proof-of-work [3–6]
puzzles to force all prospective clients to solve computa-
tionally intensive puzzles before connecting to service in the
initial point. )is method utilizes the advantage of time,
giving all prospective clients an equal chance to be served by
the initial point. )e disadvantage of proof-of-work puzzles
is that a motivated attacker can establish a distributed de-
nial-of-service attacks by controlling large botnets [7]. Also,
proof-of-work puzzles slow down all clients, including the
benign ones. )e alternative approach (for example, DoSE
[8]) is to mitigate the heavy traffic of prospective clients by
installing the initial point in a content distribution network
(CDN) and expanding the capacity of the network’s initial
point. Individual nodes in a CDN also require clients to solve

puzzles to handle potentially overwhelming requests by
clients.

1.3. Approach and Results. Our approach is to extend client
bootstrapping by utilizing high-capacity networks such as
notification networks provided by prominent cloud com-
puting providers. We develop a protocol that uses a noti-
fication network as an initial point and performs full client
bootstrapping that can handle a large number of client
bootstrapping requests. )e presented protocol maintains
the secrecy of proxy servers, avoids unnecessary details in
client bootstrapping, and is highly scalable. )e imple-
mentation of the protocol is challenging and should satisfy
the security and functionality requirements to be effective.
Using prominent cloud-based solutions, we developed a
prototype that can fully implement the protocol. Our pro-
totype is developed for web applications with mobile clients.

In summary, the contributions of this work are

(1) A novel client bootstrapping model that uses high-
capacity networks (such as notification services) as
the facilitator for moving target defense systems in
the cloud. )e model enables a reliable client
bootstrapping that improves the performance and
the security of initial client interaction with the target
network.

(2) A protocol for client bootstrapping in moving target
defense systems for cloud-based networks.

(3) A full implementation of the system using Amazon
Web Services and Google Cloud Platform with the
prototype available as an open source project.

(4) A thorough security analysis of the presented model
and a discussion of its applicability using currently
available technologies.

(5) Evaluating the execution time for client registration
using the presented bootstrapping model.

2. Related Work

Moving target defense systems rely on randomizing access to
attack targets as the core technique to combat intrusions.
Although all such systems share the common goal of dis-
tracting attackers from targets, the context in which moving
target defense is applied can be distinct. For example,
moving target defenses are designed to secure operating
systems. One prominent example is the use of address
randomization in the stack (e.g., [9–11]). Another area in
which moving target defense is applied is distracting at-
tackers from targets in a network. )ere are several previous
works that have developed systems for securing classical
networks (e.g., [2, 12–14]), software-defined networks (e.g.,
[15, 16]), and virtual cloud-based networks. Many of these
proposals have common mechanisms, for example, ran-
domizing the IP addresses, client authentication and reg-
istration, and techniques to shuffle clients. Techniques such
as code watermarking [17] (inspired by [18]) can also be used
for building deceptive systems that distract attackers from
the target.
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2.1. Moving Target Defense Solutions. Several classical works
proposed creating relay networks that used client filtration
to distract denial-of-service attackers from reaching their
targets. )ese works were designed to work with physical
networks without the use of software-defined networking or
cloud computing platforms. Works such as Mayday [19],
SOS [13], and WebSOS [12, 20] demonstrated the feasibility
of the idea. Migrating OVErlay (MOVE) [21] was a sub-
sequent work that reutilized network overlays with a re-
thinking of the client filtration. MOVE developed the idea of
client-to-machine reassignments by introducing a technique
for migrating application processes that run on victim
machines to machines in regions of the network that were
not affected by an attack.)e new addresses were secret, and
only authenticated clients were rerouted to the new ma-
chines. Badishi et al. [22] also proposed an attractive ap-
proach for classical networks in whichmoving target defense
is realized through port hopping. )e core idea is randomly
selecting ports and redirecting clients to new ports.We share
a similar technique in our model and distribute clients to
random ports.

Similar to network overlays and client migrations, other
works proposed the use of proxy servers as a primary mech-
anism formoving target defenses.)e core idea is to limit access
to application servers from intermediate proxy servers that
authenticate and register clients.)en, filter client requests, only
allowing requests from authenticated clients to reach applica-
tion servers. MOTAG [2] (and similar works such as [23])
proposed assigning clients to single proxy servers, which is
replaced by a pool of available proxy servers whenever the
assigned proxy is found to be exposed. MOTAG proposed to
shue clients when proxy servers were under attack (reactive
shuing). Later, PROTAG [14] improved MOTAG’s shuing
policy by periodically reassigning clients to new machines re-
gardless of their attack status, yet maintaining the mediation of
secret proxy servers. Although PROTAGpresents an interesting
shuing policy, it does not address the problem of explicit attacks
on authentication servers.)edebate on optimal shuing policies
and methods is continued in [14, 16, 24–26]. A recent study
demonstrated ways to reduce attack detection time by utilizing
resources on a victim machine [27]. However, our focus in this
work is not on improving the shuing but provide an improved
authentication method.

MTD in the cloud is achieved by utilizing the elasticity of
cloud computing platforms. In a cloud environment, a
customized virtual machine instance can be created in
seconds by issuing API calls. Firewall rules and virtual
routing, which are controlled and deployed in a cloud
console, are also accessible from secure SDKs.)e agility and
elasticity of cloud tools have contributed to forming moving
target defenses, as proposed by Jia et al. [28]. In [28], the
network’s surface is accessible to anonymous Internet cli-
ents. )e core idea is to create replica servers on the fly, split
the current traffic, and distribute it to the newly created
servers. Our model avoided creating replicas as the primary
moving mechanism and proposed to filter clients efficiently
using the notification framework. Limiting access to ports at
the level of the cloud computing platform eliminates un-
wanted traffic from anonymous clients. Brzeczko et al.

approached the problem differently and proposed to analyze
network traffic data in decoy cloud-based virtual machine
instances and implemented a traffic redirection strategy
based on the learned behavior [29]. Our model does not
depend on data analysis as we do not explicitly filter clients.
However, we can benefit from data analysis to introduce
enhanced client filtration.

2.2. Client Bootstrapping. Although our focus is not on im-
proving proof-of-work schemes, we discuss the details behind
the idea by surveying some of the previous works. Aura et al.
developed the basic security requirements for client puzzles [3].
Client puzzles should be easy to solve by the server, the solution
to puzzles can be adjusted indefinitely, solutions cannot be
searched in a database of precomputed solution candidates, and
the same puzzle given to two different clients must require two
distinct solutions. )e authors suggest requiring the client to
provide the value of x given h (x), where h (x) is a secure hash
function. )e work in [4] continues the effort and proposes a
protocol that determines the server load and adjusts the puzzles
accordingly. Waters et al. later argued that the puzzle scheme
itself is the target of attacks [6]. Instead, they propose to link
puzzles to server identity using public-key cryptography. )is
eliminates the possibility of forge puzzles. )ey also propose to
have forward security, which prevents the use of puzzles used at
a time the distributor of the puzzles was compromised. )e
work in [5] proposed the use of seeds in the puzzle generation
algorithm and the distribution of seeds through DNS servers.
)e similarity of the work in [5] with our proposed model is in
the idea of redirecting requests to a larger network. In our
model, we use cloud-based notification networks as a cushion
for the target server to slow down the traffic.

Content distribution networks promise to use a network
of low-cost content distribution networks (CDN) as proxies
to application servers, relying on the effectiveness of these
networks [30]. )e model reduces large-scale attacks on
target applications [8, 31]. Although CDN proxies are a step
forward for deploying moving target defenses for small and
medium enterprises, they can potentially be a subject of
residual resolution attacks. In these attacks, attackers can
switch to unprotected platforms and reveal secret IP ad-
dresses behind CDN proxies [32]. While oblivious CDN [33]
does not particularly address the problem of facilitating a
moving target defense, it does complement CDN-based
moving target defense systems. Oblivious CD provides a
mechanism for preventing an attacker from learning about
the content that it is delivering or the clients that it is serving.
A potential alternative is to use a network of low-cost devices
to develop a guarding scheme against initial attacks [34].

2.3. Open Problem. A summary of the related work is
presented in Table 1. It remains an open problem to in-
vestigate a secure protocol for client bootstrapping using
high-capacity networks. Although the use of content de-
livery network is a step towards solving the problem, a
secure, light-weight, and simple to implement solution is
highly desirable.
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3. System Architecture

In this section, we start by presenting a general overview of
our design (Section 3.2), followed by the description of our
method for client registration (Section 3.3), and client-to-
proxy assignments (Section 3.4). Finally, the security of our
model is analyzed in Section 3.6.

3.1. -reat Model. An attacker is a remote program that
sends application-layer requests to machines in a target
network’s surface (those machines that are accessible from
the Internet). Benign clients send a reasonable number of
requests in a time interval. A benign client does not rep-
resent a computational burden on the server. However, a
client that sends an unusually high number of requests is also
considered an attacker. )e attackers aim to consume
maximum resources from vulnerable machines in the target
network. Attackers do not control the target network’s
surface and cannot escalate their privileges.

An unregistered (anonymous) client is the one that is not
registered to connect to a machine in the target network.
Except for those with black-listed addresses or identifiers,
our model assumes all connecting clients are initially benign.
However, the interaction is not directly with the moving
target defense system. )us, we assume none of the com-
ponents of the moving target defense system are accessible
from the Internet, except for proxy servers that respond to
Internet requests.

3.2. Design Overview. )e main goal of our model is to
facilitate secure and DoS resilient client bootstrapping for a
moving target defense system. In this article, we also refer to
client bootstrapping as the client-to-proxy assignment
problem. An unregistered client intends to communicate
with an application service provided by the target network.
)e client communicates the intent to access the application
server by registering with a notification service. )e noti-
fication service is assumed to be a high-capacity network that
can handle a large number of requests and has mechanisms
to thwart denial-of-service attacks at various layers. )e key
idea is that the notification network mitigates the initial
attacks, significantly reducing the burden on the target
network. Conceptually, mitigating initial attacks using a
high-capacity network is similar to the use of client puzzles
as proposed in previous works. However, the advantage is
that the target network does not have to accept initial

connections at all. )us, attack techniques by attempting to
connect to the target network are completely mitigated.

When the client sends an initial request to the notifi-
cation service, the registration process starts. )e notifica-
tion service registers the client and generates a unique
notification token. )e client automatically receives the
notification token from the notification service (Figure 1).
Once a notification token is generated for the client, the
client’s token and other identifiers are shared with the
controller. )e controller is a software component that runs
in the target network and is not directly accessible from the
Internet.)e component continues communication with the
client through the cloud notification service until the client is
successfully registered or is denied access (Section 3.3).

)e controller manages network access rules through the
cloud computing provider. Each client is assigned to a
specific proxy server through a port listener that is launched
on the proxy server. )e system grants communication
access to the designated port only to clients assigned to a
specific proxy. Proxy servers relay client requests and re-
sponses to and from application servers. A pool of proxy
servers awaits client assignments. )e machines in the proxy
pool are used when the current active set of proxy servers
reaches maximum capacity.

3.3. Registering Clients. An unregistered client is denied
access to the target network’s proxy servers. )is is because
proxy servers’ IP addresses are only known to registered
clients. Also, network access control only allows incoming
traffic to a proxy from registered clients. Wemodify network
access control policies using APIs provided by the cloud
computing platform (for example, by modifying security
groups in AWS).

3.3.1. Assignment Records. )e controller (Figure 2) dis-
tinguishes between a registered client and an unregistered
client, using client-to-proxy assignment records. If a valid
record for a client exists, the client is registered, and the
network access control policy is updated to allow the client
to access the designated proxy server. A client-to-proxy
assignment record (simply an assignment)Ai for a client i is
a tuple:

Ai � (T, C, A, P, L, t), (1)
where T is a notification token received from the cloud
notification service, C is a unique identifier (such as the
International Mobile Equipment Identity that can be

Table 1: A summary of related works.

Approach Problem Target
cloud Limitations

Relay networks Client filtration No Requires thorough client identification

Cloud MTD Client registration and
shuffling Yes Requires thorough client identification or proof-of-work

Proof-of-work schemes Client bootstrapping No Requires solution of computationally intensive puzzles
Content distribution
networks Client bootstrapping Yes Requires solution of computationally intensive puzzles or a large

network

4 Security and Communication Networks



validated using the Lun algorithm [35, 36]) for the client’s
physical device, A is the client’s IP address, P is the proxy’s
IP address, L is the listener port which limits inbound traffic
to C, and t is a timestamp. Client-to-proxy assignment
records (simply assignment records) are securely maintained
in an internal database of the target network. )e internal
database is only accessible via the controller (which itself
does not interact with Internet clients).

)e notification token T is critical for the initial indirect
communication between the client and the controller. Using
the token T, a client can receive the client-to-proxy as-
signments, which must remain confidential. In typical usage
of notification systems, clients register with the notification
network, receive a token T, and present T to the application
server to receive messages. )is process is surprisingly in-
secure. A malicious client can intercept T and receive the
victim’s messages. To prevent this attack, the controller must
independently receive T from a trusted cloud computing
platform. )us, in our model, the trusted cloud notification
service distributes T to both the client and the controller.

3.3.2. Registration Process. As depicted in Figure 2, an
unregistered client’s registration process starts with regis-
tering with the notification service.)e notification service is
used as a mediator between the target network and the client.
)e notification service is independently managed by a cloud
computing platform and is capable of handling and pre-
venting denial-of-service attacks. Once a token T is gen-
erated, in Steps 2 and 3, T is stored in a database table shared
with the controller and is transmitted to the requesting
client. Both the cloud computing platform and the controller
can read from and write to the table. )e controller peri-
odically checks for new client tokens in the shared table, as
shown in Steps 4 and 5. Once a new client token is retrieved,
the controller verifies if the client is not blocked from
accessing the network. If the client passes the check, the
controller requests from the assignment manager (Section
3.4) to create and store an assignment record for the client
(Steps 6–9). Finally, in Step 10, the controller generates a
notification message containing the record, which is sent
through the cloud notification service in Step 11. )e client
receives the notification using a secure channel (such as
Transport Layer Security).

3.4.Managing Assignments. )is section explains the details
of creating assignments, as shown in Steps 6–9 of Figure 2. A
client assignment recordAi indicates successful registration
of a client indexed i. )e assignment manager is logically
separated from the controller but can run as a stand-alone
within the controller. )e assignment manager creates and
stores assignments, manages a pool of available proxies, and
modifies network access control rules. At a high level, given
client information, C and A, and the notification token T,
the steps for creating a new assignment are given next. Let Q
denote a queue of proxy servers that are ready to serve new
clients. )en, to create an assignment,

(1) Dequeue a proxy P from Q

(2) Dequeue a listener port L from P

(3) Create an assignment recordA using P, L, T, C, and A

(4) Send a message to the controller containing A

(5) Modify the network access control rule to allow
inbound traffic from client IP address A to proxy IP
address P on port L
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Figure 1: Architecture of a moving target defense system with a
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3.4.1. Assignment Policy. Our assignment policy addresses
two concerns: the lifetime of assignments and proxy se-
lection. Assignments are created and stored for unregistered
clients and are never removed from assignment records. An
assignment is modified when the client is moved to a new
proxy. A single device C can be associated with multiple
assignments, one for each IP A using which the client re-
quests a new registration. However, among multiple as-
signments for the same client identifier C, only the
assignment with the most recent timestamp is valid. With
multiple assignments, a client can volunteer for self-reas-
signment, requesting a new registration and assignment
using a new IP address, thus moving to a new proxy.

3.4.2. Proxy Addressing. For assignments to be used by
Internet-based clients, a single public IP address must
identify a proxy. )e public IP address of a proxy P is only
disclosed to those clients with an assignment to P. )e IP
addresses of the proxies are allocated individually by sending
requests to the cloud computing platform’s IP address al-
location algorithm Ω. We assume that Ω behaves randomly
and the IP addresses allocated by it are not predictable. If, in
a specific cloud computing platform, addresses are pre-
dictable, an IP address shuffling scheme is required to in-
crease IP address entropy. A predictable IP address
allocation scheme defeats the primary purpose of moving
target defense.

To optimize cost, our model requires two sets of proxies:
an active proxy set π and an awaiting proxy set π⋆ (the proxy
pool). When the system is bootstrapped, at least one active
proxy must exist, that is, |π|≥ 1. )e proxy pool, π⋆, is
gradually expanded to include more proxies, based on the
application demand. )e specific algorithms for an opti-
mized proxy pool π⋆ (for example, [37]) is out of the scope of
this work.

3.4.3. Choosing a Proxy and a Listener. Clients are assigned
to a listener L on a proxy P. Here, we discuss the problem of
choosing a proxy and a listener for a client as a scheduling
problem. )e core requirement of a schedule for client
assignments is to avoid choosing highly predictable proxies
and listeners that. We consider predictability as to the
probability of choosing a specific proxy for each new client
assignment. A highly predictable choice is made when the
probability of choosing a proxy is close to 1 and |π| is
minimized.

When |π| � 1, the choice of proxy is deterministic, to
prevent the attacker from predicting the next client as-
signment, we increase the number of virtual machines
available for assignments. With a single proxy, our model
can reduce the probability of predicting the next assignment
by randomizing the choice of the listener port on the proxy.
We lower the predictability by assigning clients to specific
ports. )e predictability of assignments depends on the
probability of choosing a proxy P and a listener C.

When |π|> 1, an unpredictable schedule for choosing a
proxy is required. Our approach is to use a precomputed
schedule for several future assignments. A schedule of proxy IP

addresses is stored in a queue Q. Initially, with an empty Q, an
IP address for each proxy in π is allocated by the cloud
computing platform’s Ω function and is stored in Q. We as-
sume that Ω does not produce predictable IP addresses. )at
said, IP addresses in Q are randomly shuffled. Other random
shuffles of all values inQ are inserted inQ, thus creating longer
schedules. )e assignment manager selects the IP addresses in
Q as the choices of proxies for future assignments. Next, we
continue to choose a listener port on the chosen proxy.

Similar to choosing a proxy, a listener port is chosen.
Here, we create a proxy queue P filled with all randomized
permitted port values (for example, all port values in range
[1023, 65535] for Linux). Each port is assigned to a single
client. When the system is overloaded, serving clients more
than available ports on all proxies, the schedule inP repeats
and ports are assigned to more than one client.

3.4.4. Creating Assignments. For each client i, an IP address
is dequeued fromQ and inserted in a new assignment record
Ai. Similarly, a listener port L is dequeued from P and is
inserted inAi. )e assignment record is completed with the
client identifier C and IP address A, the client’s notification
token (from the table shared with cloud notification service),
and the current timestamp t.

3.4.5. Network Access Control. Modifying network access
control rules are required to discard unwanted traffic to
proxies. For each assignment, the assignment manager
should update network access control rules to only allow
inbound traffic from a specific list of client IP addresses. We
either update software firewall rules (such as IPTABLES) on
the virtual machine to control inbound traffic or update the
network access control rules controlling network traffic
through the cloud computing platform. )e disadvantage of
the first choice is that the attacker can attempt to establish
connections, which is refused by the virtual machine.
However, the attempted connections do consume resources,
and the virtual machine itself is at the front line.

)e second choice requires support from the cloud
computing platform, which is possible in AWS using se-
curity rules or firewall rules in the Google Cloud Platform
(GCP). Initially, all inbound traffic is denied using a general
security rule. When an assignment record for a newly
registered client is created, the assignment manager issues an
API call to add a new security rule. )e new security rule
allows the client IP to connect on the chosen port L. )e
advantage of this approach is that the malicious traffic does
not reach the targeted virtual machine if the origin’s IP
address is not white-listed.

Creating a new assignment relies on the implementation of
the underlying data structures. To analyze the time complexity
of the procedure, notice that Steps 1–4 require constant time.
Step 5 involves a lookup in the access control list, which is
handled by the cloud computing provider. In general, Step 5
requires a direct lookup, for example, using a dynamic array or
a hash table, also requiring a single operation. Note that the
time required to modify the access control list depends on
network communication between the controller and the cloud
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computing platform, and the performance of the data structure
implemented in the cloud computing platform. In our ex-
periments, as shown later in Section 5, the entire assignment
procedure requires less than three seconds when 100 simul-
taneous clients attempt to register.

3.5. Complexity. In terms of time complexity, we analyze
two major operations. One is client registration and the
other is maintaining a list of banned clients that are detected
to be attackers. Client registration requires maintaining a list
of clients and their identifiers as generated by the controller.
)is list can grow very large as the number of clients grow.
Adding a client to the ban list requires a single operation.
However, as the client blacklist grows, registering new clients
are affected. )e client registration list and the blacklist are
implemented as a binary tree, requiring a search ofO (log n).
Note that the tree is limited to the number of nodes it stores,
preventing long search time. )us, as new clients are added
to the blacklist, the tree replaces existing nodes with new
client information when the maximum number of nodes is
achieved. Furthermore, the client lists can both be recorded
on a relational database, taking the advantage of efficient
column indexes for fast search.

3.6. Security Analysis. Our security model assumes a remote
attacker that attempts to subvert the mechanisms provided
in the design of the notification-based client bootstrapping.
Here, we analyze the security of our model by considering

(1) Forging client identifiers
(2) Frequent registration requests
(3) Deterministic assignments
(4) Attacking without registration

3.6.1. Forging Client Identifiers. An attacker can attempt to
forge client identifiers such as device identifier C, IP address
A, or notification token T. By forging client identifiers, the
attacker aims to deny access to a client by convincing the
controller that the client is abusing the proxy. )e attacker
can also use forged identities to attempt large-scale dis-
tributed denial-of-service attacks. To achieve either of the
two goals, the attacker must find the assigned proxy and
present the required identities to bypass the controller’s
network access control rules. To forge a client identity, the
attacker may attempt to obtain the notification token T. )e
attacker uses T for receiving the secret IP address of a proxy
P to which the client is assigned. )e attacker can intercept
the communication between the client and the cloud no-
tification service to intercept T. )e effect of attack can be
reduced by securing the communication channel using
Transport Layer Security (TLS).

)e attacker can also find P by eavesdropping on client
communications. )en, the attacker extracts the IP address P

(which is not encrypted in TLS) from network request headers,
even when the communication is encrypted. For P to be useful,
the attacker must also forge the client IP address A and the

client’s device identifierC. ForgingA is feasible, but forging the
specific device identifier C requires either a brute-force attack
or compromising the client’s device. Although there are the-
oretical possibilities, such attacks are not feasible, as they are
complicated and require multiple successful attacks. Note that,
such an attack can become more complicated by appending a
unique cryptographically secure key K that is generated for the
user and is presented with every network request. )is extra K

reduces the chance of a successful brute-force attack on an
IMEI as the chosen value for C.

Since registration requires different pairs of IP addresses
and device identifiers, an attacker can use a single IP address
and forge multiple device identifiers. Obtaining actual device
identifiers requires compromising legitimate client devices
or using many devices, which are complicated and resource-
intensive methods. An alternative is to generate device
identifiers based on algorithms used to generate hardware
identifiers for manufacturers. For example, an attacker can
obtain the algorithm used to generate IMEI numbers and
execute the algorithm to request multiple fake registrations.
)is attack can be thwarted in two days. First, the controller
can impose a maximum number of IMEIs associated with a
single IP address. Second, the cloud-based notification
service should detect abusive and frequent requests to
register for notification originating from an IP address. Even
if the attacker attempts to use multiple spoofed IP addresses
with fake IMEI values to register, the registration for the
notification service fails. )is is because the attacker cannot
receive the notification tokens on a spoofed IP address.

3.6.2. Frequent Registration Requests. Our model does not
limit the number of times a client can request a new reg-
istration. New registrations are limited to the exact com-
bination of client IP address and device identifier. A client
with access to dynamic IP addresses can request new reg-
istrations with a single device. Recall that the registration
starts with requesting a notification token T. Requesting a
new T slows down brute force attacks on the registration
process because of the time required to execute the notifi-
cation protocol. Even though registering with the notifica-
tion service limits brute-force attackers, regular clients only
require seconds (depending on the notification service
provider) to register for notifications. After registering for
notifications, the client cannot directly communicate with
the controller. )us, malicious clients cannot exhaust the
controller’s resources, for instance, by using frequent re-
quests to register. Instead, when ready, the controller re-
trieves T based on a periodic schedule and proceeds to
complete the client registration and produce an assignment.

3.6.3. Deterministic Assignments. A deterministic assign-
ment is one that uses a predictable probability distribution to
assign a client to a proxy such that an attacker can predict the
next chosen proxy with considerable probability. )e
probability of correctly predicting the next assignment is
dependent on the number of available proxy servers and the
assignment scheduling policy. Consider m proxies that
actively serve clients. With a round-robin schedule, starting
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with proxy Pi, the attacker can be confident that the next
proxy assignment to be Pi+1, knowing the current assign-
ment Pi used by the system. In a target network with many
client assignments, the attacker can be sure that the next
assignment is on Pi+j for some j> i. With a uniform random
schedule, the chance of selecting any proxy is 1/m. )us,
increasing the number of proxies is crucial to lowering the
probability of correctly predicting assignments.

Predicting assignments helps the attacker to concentrate
efforts on specific proxy servers. As mentioned earlier, we do
not focus on improving the scheduling policy (as discussed
in [38, 39]). )is is a significant problem that requires
further investigation in future work.

3.6.4. Attacking without Registration. Attackers may at-
tempt to deny service to benign clients without registering in
the system. We assume attacking the notification service is
not useful to the attacker as the cloud computing provider is
powerful and capable of thwarting the attack. To attack the
proxy servers directly, the attacker should identify the IP
addresses of the proxies. Identifying the proxies could use
the probabilistic analysis mentioned earlier. Assuming the
attacker can identify IP addresses of the proxies, the attacker
must target the cloud computing provider. )is is because
our model utilizes the network access control rules of the
cloud computing provider. Every open port has a specific
rule that only allows inbound traffic from clients assigned to
the port. )e attacker can spoof the client IP addresses to
bypass the rule. Such an attack requires precise prediction of
one or a few IP addresses that are allowed to use the port.
)is attack is a time consuming and resources intensive
effort that does not seem to be practical.

4. System Implementation

We developed a prototype system representing the notifi-
cation-based model introduced in Section 3.2. Our proto-
type consists of an Android client, several Firebase tables,
and an implementation of the controller. )e controller is
implemented using software development kits (SDKs) from
Firebase and AWS, primarily in Python and Node.js. )e
primary functions of the prototype include all the required
services from the controller as described earlier in Section 3.
)e source code is available on https://github.com/kussl/
nMTD.

Given current technologies, the choice of Firebase for
sending notifications is critical to our model (as described
later in this section). We hosted the proxies and the con-
troller server on AWS. However, the required functionality
of the proxies and the controller can also be implemented
entirely in Firebase. Our goal is to demonstrate the feasibility
of our model using currently available technologies. )e
implementation of our model faces challenges in

(1) )e choice of cloud notification service and imple-
mentation of the architecture and security require-
ments of new client registrations

(2) Assigning a client to a random port number in the
selected proxy

(3) Dumping network requests to a cloud-based file
system for future investigation of malicious requests

4.1. Implementing New Client Registrations. We studied two
primary cloud notification services: Apple Push Notification
service (APNs) and Firebase CloudMessaging. Both services
have similar registration requirements for clients. After
successful registration, the client and the application server
are given a client notification token T. When the application
server wants to send a notification to the client, it passes T

and a message M to the notification service. Locally, the
application server associates T with a client identifier to be
used for client-specific messages. )e critical difference
between the two services is in the way the application server
receives the notification token T.

Unfortunately, APNs do not provide a way for the ap-
plication server to receive the notification token directly
from APNs servers. Instead, the protocol requires the client
to give T to the application server. )is violates our model,
which does not trust the client with T since a malicious client
can present a stolen T. We chose Firebase Cloud Messaging,
which provides a secure way to share T with the application
server. )e registration process in Figure 2 is precisely
implemented in Firebase. Once a client is registered with
Firebase CloudMessaging, T is generated and is recorded on
a table. )e application server can reside either on Google
Cloud Platform or any other cloud-based hosting service
(thus, connecting to the table using an API call). )e table of
tokens cannot be accessed by any client or any other
component in the target network. Inbound traffic is only
allowed from the IP address of the controller server.

4.2. Assigning a New Client to a Proxy. Assigning a new
client to proxy is in six steps: (1) retrieve a new token, (2)
create a new client record, (3) choose a proxy server and port
number, (4) launch a listener on the selected proxy server
and port number, (5) generate a message for the client, and
(6) send a notification to the client containing the generated
message.

First, the controller runs an event listener in the back-
ground to detect a new client notification token, which
triggers client registration. )e new client token is recorded
in the Tokens Table. )e controller verifies if the client is
blocked from registration, by searching the client identifiers
in a blocklist table. Note that our prototype does not include
methods for the detection of suspicious clients at the time of
registration. )e controller registers for a Node.js listener
that is triggered by Firebase when a new client record ap-
pears in the Tokens Table. )e registered listener in the
controller receives a new_token record, which could be
processed immediately. With several new proxy servers
added, one is chosen by random, followed by a random
choice of the port number. )e unused port numbers are
stored in a buffer from which the new port number is se-
lected. With a selected port on a proxy, the controller moves
to launch a new listener port. When the port is successfully
launched, the security setting on the selected proxy is
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updated. )e rules could be updated using the AWS com-
mand line tools:

aws ec2 authorize-security-group-ingress --group-id
GROUP_ID --protocol tcp --port SELECTED
--cidr CLIENT,
where GROUP_ID is the selected proxy’s group iden-

tifier (used for a group of EC2 instances in AWS), SE-
LECTED is the selected port by random, and CLIENT is the
new client IP address being registered. Note that, in AWS,
security rules can be applied to groups of virtual machines.
)us, in our implementation, each group only has a single
proxy, since each proxy has different security rules.

Finally, a new notification is created, containing the
selected proxy’s IP address and the launched listener port,
which is sent to the newly registered client.

4.3. Dumping Network Requests. Analyzing network requests
to an overloaded proxy helps in detecting malicious clients.)e
challenge is that overloaded proxy servers cannot respond to
request when under attack.)us, there are two ways tomonitor
proxies. First, to know if a proxy is under heavy load, we use the
AWSCloudWatch service to detect high CPUormemory usage
in all proxy machines. We developed a daemon that checks
CPU and memory usage for each proxy machine every minute.
As of this writing, the necessary information from CloudWatch
is provided free of charge. Detailedmonitoring of usage patterns
is available with additional charges.

Our model requires analyzing the access pattern on specific
ports. )us, we needed to develop a specific monitoring system
to detect which ports are receiving the highest network requests.
)e hypothesis is that ports with more requests demand higher
CPU and memory (regardless of the type of request used). )is
hypothesis can be reevaluated in other implementation to in-
clude detailed measurements. Our approach is to periodically
dump network requests to an external file system that can be
retrieved and analyzed by the controller. )is functionality can
either be implemented by dumping network requests to an
AWS Simple Cloud Storage Service (S3) Bucket using FUSE
https://github.com/s3fs-fuse/s3fs-fuse.git, which mounts an
AWS S3 Bucket to a Linux machine. Alternatively, one can
mount a remote directory on an independent Linux machine
that is internally connected to all proxy servers. We chose to
develop a daemon that runs on each proxy, reads Apache
forensic log files http://httpd.apache.org/docs/2.2/mod/
mod_log_forensic.html (containing network requests for the
application), and transfers them to an AWS S3 Bucket using
AWS APIs.

5. Execution Time

In this section, we present the performance of our approach
by examining the time required to register and assign a new
client to a proxy and the time required to reassign an existing
client to a new proxy. Our model assumes that clients
connect using mobile devices. )us, for our experiments, we
developed a web-based mobile client simulator that can
register for cloud notifications and receive a new assignment
through a notification. Note that experimentation with large

mobile clients is not feasible as the protocol requires full
registration of clients using valid IMEI numbers. Hence, the
numbers below are for the clients that could be simulated
using Google Firebase tools on a single machine.

5.1. Client Registration

5.1.1. Setup. )eAndroid client initiates a request to register
with the controller after receiving registering with the no-
tification server. )en, the controller creates a database
record for the client, after randomly selecting a proxy IP
address and port. In this experiment, all the steps enu-
merated in Section 4 are executed, starting with sending a
request to receive a notification and ending with receiving a
notification containing a proxy assignment. )e time
measured includes the effort to generate a notification token
by Firebase Cloud Messaging service. )e registration time
involves choosing a random port number, launching a new
listener port, and requesting AWS tomodify security rules to
restrict inbound traffic to the requesting client on the chosen
port.

5.1.2. Results. As Figure 3(a) depicts the results for regis-
tering and assigning a new client to a proxy. )e experiment
tests register several simultaneous clients. )e trend line
shows a polynomial trend in increasing the time required for
registration. As the figure shows, when the number of clients
is increased by a factor of 10, the time required is only
increased by 54%. In contrast, solving computationally in-
tensive puzzles are intended to delay clients up to several
tens of seconds. )e reason is that puzzles are intended to
slow down the requests. For example, the puzzle proposed in
[4] requires computing x, given the preimage obtained from
h(x), where h(x) is a preimage resistant function. )is
operation is supposed to delay the client by T time units and
suffers from two weaknesses. First, all clients, including the
benign nodes, are delayed. Second, a motivated attacker can
reduce the search time by separating the computation. Our
scheme has a modest performance penalty, enforces proper
registration without sacrificing privacy, and efficiently delays
flooded messages without affecting benign clients.

5.2. Client Reassignment

5.2.1. Setup. In this experiment, the performance penalty of
reassignment is measured. As described earlier in Section 4,
the reassignment is triggered when a high CPU usage is
detected. Once the controller is notified of this event, we
start measuring the time until the client receives a new IP
address and port combination. We assume that the client
manually changes its connection when it receives a new IP
address and port combination. )us, we disconnect the
client after a timeout, which is also sent to the client.

5.2.2. Results. )e results of Figure 3(b) depicts the effort
required for the process of reassigning all clients to new
proxy servers. )e reassignment involves closing the current
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listener port, launching a new listener port, and modifying
the security rules in AWS. )e client is informed about the
new assignment with a notification message. Measuring
reassignment at a large scale, Figure 3(b) shows the total time
required to reassign several hundreds of simultaneous cli-
ents. As the figure shows, reassigning 1000 simultaneous
clients approximately requires 105 seconds of time.

5.3. DoS Attack

5.3.1. Setup. In this experiment, the effect of a denial-of-service
attack is tested. )e assumption is that there are currently 100
active clients registered with the controller and connected to
their respective proxies. In this case, the experiment tests the
time performance of detecting, reassigning, and moving the
clients to new proxies. In this scenario, the attacking clients are
detected based on analyzing the log of requests on each port. If a
port has caused too many requests or has exploited a vulner-
ability, it is marked as an attacker assignment (precise detection
is outside the scope of this work and has been explored heavily
in previous works). )e attacking ports remain on the same IP
addresses, quarantined and deceived, and all other benign
clients are reassigned to new IP addresses.

5.3.2. Results. We developed a synthetic vulnerability that
could be exploited by attackers. When exploited, a vulnerable
URL causes unusual system activity on the target. )is mimics
the numerous software vulnerabilities that are exploited daily.
Figure 3(c) shows the performance of reassigning clients in our
implementation when attackers are present. )e time shown is
the total duration for all 100-x clients to receive new IP ad-
dresses, where x ∈ [1, 50] is the number of active trackers.

5.4. Comparison with Existing Solutions. Here, we compare
the execution time of our work with four existing work
chosen to reflect various alternative models to the one
presented in this work. )e results of the comparisons are in
Table 2.)e table shows the time per client as presented with
the type of operations measured. Because of the differences
in the focus, various closely related operations are consid-
ered.)e performance of our model (client bootstrapping) is

compared in two settings: new client registration
(Figure 3(a)) and client reassignment (Figure 3(b)). )e
closest performance is by Portcullis [5], which uses various
schemes including client puzzles. )e worst performance is
with CDN redirection in [30] and CDN-on-demand [31].
Catch-me-if-you-can does not provide an alternative to
client registration. However, it presents a closely related
approach with the performance time measured in client
migration. As shown in the results, client bootstrapping
provides a competitive advantage in terms of execution time,
which includes the entire process of the client bootstrapping
protocol.

6. Conclusion

)is paper presents a client bootstrapping protocol for
moving target defense, which reduces the time required to
register new clients in a cloud-based network. )e presented
protocol aims to mitigate denial-of-service attacks on initial
network entry points. Existing methods mainly use client
puzzles for mitigating attacks on the initial network entry
points. )ese methods require several seconds of intentional
delay for clients to solve computationally intensive puzzles
before allowing the client to connect. )is slow down is to
prevent attacks on the first encounter with the clients.
However, our solution replaces unnecessary delays with the
mandatory notification registration, which could be
implemented in less than three seconds as the results sug-
gest. )us, the achievement maintains the security promises
of moving target defenses while preventing delays for benign
clients. Our model is limited to clients who can acquire
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Figure 3: Execution time in seconds for (a) registering new concurrent clients, (b) reassigning clients to new proxies, and (c) reassigning
clients to new proxies under a synthetic DoS attack. )e number of clients are actual clients with IMEI numbers.

Table 2: Comparison of the presented client bootstrapping time
performance against alternative solutions.

Model Time per client (s) Operation
Client bootstrapping 0.026 New client registration
Client bootstrapping 0.034 Client reassignment
Portcullis 0.040 Capability setup
Catch-me-if-you-
can 0.083 Client migration time

CDN-on-demand 1.172 Serving clients
CDN redirection 2.370 Response latency
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unique identifiers such as the IMEI number. )is limitation
can be potentially addressed using client fingerprinting
techniques, which is the subject of future work. Further-
more, intrusion detection systems (such as [40]) can also
assist moving target defense system to lower the volume of
initial attacks.

Data Availability

Our results are available on https://github.com/kussl/
nMTD.
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